The role of histogram analysis in diffusion-weighted imaging in the differential diagnosis of benign and malignant breast lesions

Author:

Jin Ya-Nan,Zhang YanORCID,Cheng Jing-Liang,Zhang Xiao-Pan,Hu Ying,Shao Xiao-Ning

Abstract

Abstract Background The present study aims to investigate the role of histogram analysis of intravoxel incoherent motion (IVIM) in the differential diagnosis of benign and malignant breast lesions. Methods The magnetic resonance imaging and clinical data of 55 patients (63 lesions) were retrospectively analyzed. The multi-b-valued diffusion-weighted imaging image was processed using the MADC software to obtain the gray-scaled maps of apparent diffusion coefficient (ADC)-slow, ADC-fast and f. The MaZda software was used to extract the histogram metrics of these maps. Combined with the conventional sequence images, the region of interest (ROI) was manually drawn along the edge of the lesion at the maximum level of the gray-scale image, and the difference of the data was analyzed between the benign and malignant breast lesions. Results There were 29 patients with 37 benign lesions, which included 23 fibroadenomas, 6 adenosis, 1 breast cysts, 4 intraductal papillomas, and 3 inflammations of breast. Furthermore, 26 malignant lesions in 26 patients, which included 20 non-specific invasive ductal carcinomas, 5 intraductal carcinomas and 1 patient with squamous cell carcinoma. The ADC-slow (mean and the 50th percentile) and f (minimum, mean, kurtosis, the 10th percentile and 50th percentile) of these malignant breast lesions were significantly lower than those of benign lesions (P < 0.05), while ADC-fast (kurtosis) and f (variance, skewness) of these malignant breast lesions were significantly higher than those of benign lesions (P < 0.05). Conclusion The histogram analysis of ADC-slow (mean and the 50th percentile), ADC-fast (kurtosis) and f (minimum, mean, kurtosis, the 10th percentile and 50th percentile. Variance, skewness) can provide a more objective and accurate basis for the differential diagnosis of benign and malignant breast lesions.

Funder

2018 Henan province medical science and technology plan

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3