EDDAMAP: efficient data-dependent approach for monitoring asymptomatic patient

Author:

Adu-Gyamfi DanielORCID,Zhang Fengli,Kwansah Ansah Albert Kofi

Abstract

Abstract Background A pandemic affects healthcare delivery and consequently leads to socioeconomic complications. During a pandemic, a community where there lives an asymptomatic patient (AP) becomes a potential endemic zone. Assuming we want to monitor the travel and/or activity of an AP in a community where there is a pandemic. Presently, most monitoring algorithms are relatively less efficient to find a suitable solution as they overlook the continuous mobility instances and activities of the AP over time. Conversely, this paper proposes an EDDAMAP as a compelling data-dependent technique and/or algorithm towards efficient continuous monitoring of the travel and/or activity of an AP. Methods In this paper, it is assumed that an AP is infected with a contagious disease in which the EDDAMAP technique exploits a GPS-enabled mobile device by tagging it to the AP along with its travel within a community. The technique further examines the Spatio-temporal trajectory of the AP to infer its spatial time-bounded activity. The technique aims to learn the travels of the AP and correlates them to its activities to derive some classes of point of interests (POIs) in a location. Further, the technique explores the natural occurring POIs via modelling to identify some regular stay places (SP) and present them as endemic zones. The technique adopts concurrent object feature localization and recognition, branch and bound formalism and graph theory to cater for the worst error-guaranteed approximation to obtain a valid and efficient query solution and also experiments with a real-world GeoLife dataset to confirm its performance. Results The EDDAMAP technique proofs a compelling technique towards efficient monitoring of an AP in case of a pandemic. Conclusions The EDDAMAP technique will promote the discovery of endemic zones and hence some public healthcare facilities can rely on it to facilitate the design of patient monitoring system applications to curtail a global pandemic.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3