Logical definition-based identification of potential missing concepts in SNOMED CT

Author:

Hao Xubing,Abeysinghe Rashmie,Roberts Kirk,Cui LicongORCID

Abstract

Abstract Background Biomedical ontologies are representations of biomedical knowledge that provide terms with precisely defined meanings. They play a vital role in facilitating biomedical research in a cross-disciplinary manner. Quality issues of biomedical ontologies will hinder their effective usage. One such quality issue is missing concepts. In this study, we introduce a logical definition-based approach to identify potential missing concepts in SNOMED CT. A unique contribution of our approach is that it is capable of obtaining both logical definitions and fully specified names for potential missing concepts. Method The logical definitions of unrelated pairs of fully defined concepts in non-lattice subgraphs that indicate quality issues are intersected to generate the logical definitions of potential missing concepts. A text summarization model (called PEGASUS) is fine-tuned to predict the fully specified names of the potential missing concepts from their generated logical definitions. Furthermore, the identified potential missing concepts are validated using external resources including the Unified Medical Language System (UMLS), biomedical literature in PubMed, and a newer version of SNOMED CT. Results From the March 2021 US Edition of SNOMED CT, we obtained a total of 30,313 unique logical definitions for potential missing concepts through the intersecting process. We fine-tuned a PEGASUS summarization model with 289,169 training instances and tested it on 36,146 instances. The model achieved 72.83 of ROUGE-1, 51.06 of ROUGE-2, and 71.76 of ROUGE-L on the test dataset. The model correctly predicted 11,549 out of 36,146 fully specified names in the test dataset. Applying the fine-tuned model on the 30,313 unique logical definitions, 23,031 total potential missing concepts were identified. Out of these, a total of 2,312 (10.04%) were automatically validated by either of the three resources. Conclusions The results showed that our logical definition-based approach for identification of potential missing concepts in SNOMED CT is encouraging. Nevertheless, there is still room for improving the performance of naming concepts based on logical definitions.

Funder

National Science Foundation

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference59 articles.

1. Smith B, Kusnierczyk W, Ceusters W, et al. Towards a reference terminology for ontology research and development in the biomedical domain. In: KR-MED 2006, Formal Biomedical Knowledge Representation, Proceedings of the Second International Workshop on Formal Biomedical Knowledge Representation: “Biomedical Ontology in Action”. CEUR; 2006. p. 57–65.

2. Zhang S, Bodenreider O. Experience in Aligning AnatomicalOntologies. Int J Semant Web Inf Syst (IJSWIS). 2007;3(2):1–26.

3. Bodenreider O. Biomedical ontologies in action: role in knowledge management, data integration and decision support. Yearb Med Inform. 2008;17(01):67–79.

4. Zhu X, Fan JW, Baorto DM, Weng C, Cimino JJ. A review of auditing methods applied to the content of controlled biomedical terminologies. J Biomed Inform. 2009;42(3):413–25.

5. Donnelly K, et al. SNOMED-CT: The advanced terminology and coding system for eHealth. Stud Health Technol Inform. 2006;121:279–90.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3