Author:
Bakker Lytske,Aarts Jos,Uyl-de Groot Carin,Redekop Ken
Abstract
Abstract
Background
Much has been invested in big data and artificial intelligence-based solutions for healthcare. However, few applications have been implemented in clinical practice. Early economic evaluations can help to improve decision-making by developers of analytics underlying these solutions aiming to increase the likelihood of successful implementation, but recommendations about their use are lacking. The aim of this study was to develop and apply a framework that positions best practice methods for economic evaluations alongside development of analytics, thereby enabling developers to identify barriers to success and to select analytics worth further investments.
Methods
The framework was developed using literature, recommendations for economic evaluations and by applying the framework to use cases (chronic lymphocytic leukaemia (CLL), intensive care, diabetes). First, the feasibility of developing clinically relevant analytics was assessed and critical barriers to successful development and implementation identified. Economic evaluations were then used to determine critical thresholds and guide investment decisions.
Results
When using the framework to assist decision-making of developers of analytics, continuing development was not always feasible or worthwhile. Developing analytics for progressive CLL and diabetes was clinically relevant but not feasible with the data available. Alternatively, developing analytics for newly diagnosed CLL patients was feasible but continuing development was not considered worthwhile because the high drug costs made it economically unattractive for potential users. Alternatively, in the intensive care unit, analytics reduced mortality and per-patient costs when used to identify infections (− 0.5%, − €886) and to improve patient-ventilator interaction (− 3%, − €264). Both analytics have the potential to save money but the potential benefits of analytics that identify infections strongly depend on infection rate; a higher rate implies greater cost-savings.
Conclusions
We present a framework that stimulates efficiency of development of analytics for big data and artificial intelligence-based solutions by selecting those applications of analytics for which development is feasible and worthwhile. For these applications, results from early economic evaluations can be used to guide investment decisions and identify critical requirements.
Funder
Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference70 articles.
1. Morello L, Guglielmi G. US science agencies set to win big in budget deal. Nature. 2018;555(7698):572–3.
2. Banks MA. Sizing up big data. Nat Med. 2020;26:5–6.
3. Kisner J. Creating Shareholder Value with AI? Not so Elementary, My Dear Watson. [Internet] Jefferies Group LLC; 2017[cited 2021, November 10]. https://javatar.bluematrix.com/pdf/fO5xcWjc
4. Fröhlich H, Balling R, Beerenwinkel N, et al. From hype to reality: data science enabling personalized medicine. BMC Med. 2018;16:1–15.
5. Furlow, B. ASCO announces funding for CancerLinQ Clinical Data Analysis Initiative. 2012; Available at https://www.cancertherapyadvisor.com/home/cancer-topics/general-oncology/asco-announces-funding-for-cancerlinq-clinical-data-analysis-initiative/. Accessed 12 Dec 2020.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献