Development, comparison, and internal validation of prediction models to determine the visual prognosis of patients with open globe injuries using machine learning approaches

Author:

Shariati Mehrdad Motamed,Eslami Saeid,Shoeibi Nasser,Eslampoor Alireza,Sedaghat Mohammadreza,Gharaei Hamid,Zarei-Ghanavati Siamak,Derakhshan Akbar,Abrishami Majid,Abrishami Mojtaba,Hosseini Seyedeh Maryam,Rad Saeed Shokuhi,Astaneh Mohammadreza Ansari,Farimani Raheleh Mahboub

Abstract

Abstract Introduction Open globe injuries (OGI) represent a main preventable reason for blindness and visual impairment, particularly in developing countries. The goal of this study is evaluating key variables affecting the prognosis of open globe injuries and validating internally and comparing different machine learning models to estimate final visual acuity. Materials and methods We reviewed three hundred patients with open globe injuries receiving treatment at Khatam-Al-Anbia Hospital in Iran from 2020 to 2022. Age, sex, type of trauma, initial VA grade, relative afferent pupillary defect (RAPD), zone of trauma, traumatic cataract, traumatic optic neuropathy (TON), intraocular foreign body (IOFB), retinal detachment (RD), endophthalmitis, and ocular trauma score (OTS) grade were the input features. We calculated univariate and multivariate regression models to assess the association of different features with visual acuity (VA) outcomes. We predicted visual acuity using ten supervised machine learning algorithms including multinomial logistic regression (MLR), support vector machines (SVM), K-nearest neighbors (KNN), naïve bayes (NB), decision tree (DT), random forest (RF), bagging (BG), adaptive boosting (ADA), artificial neural networks (ANN), and extreme gradient boosting (XGB). Accuracy, positive predictive value (PPV), recall, F-score, brier score (BS), Matthew correlation coefficient (MCC), receiver operating characteristic (AUC-ROC), and calibration plot were used to assess how well machine learning algorithms performed in predicting the final VA. Results The artificial neural network (ANN) model had the best accuracy to predict the final VA. The sensitivity, F1 score, PPV, accuracy, and MCC of the ANN model were 0.81, 0.85, 0.89, 0.93, and 0.81, respectively. In addition, the estimated AUC-ROC and AUR-PRC of the ANN model for OGI patients were 0.96 and 0.91, respectively. The brier score and calibration log-loss for the ANN model was 0.201 and 0.232, respectively. Conclusion As classic and ensemble ML models were compared, results shows that the ANN model was the best. As a result, the framework that has been presented may be regarded as a good substitute for predicting the final VA in OGI patients. Excellent predictive accuracy was shown by the open globe injury model developed in this study, which should be helpful to provide clinical advice to patients and making clinical decisions concerning the management of open globe injuries.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3