Performance of a rule-based semi-automated method to optimize chart abstraction for surveillance imaging among patients treated for non-small cell lung cancer

Author:

Byrd Catherine,Ajawara Ureka,Laundry Ryan,Radin John,Bhandari Prasha,Leung Ann,Han Summer,Asch Stephen M.,Zeliadt Steven,Harris Alex H. S.,Backhus Leah

Abstract

Abstract Background We aim to develop and test performance of a semi-automated method (computerized query combined with manual review) for chart abstraction in the identification and characterization of surveillance radiology imaging for post-treatment non-small cell lung cancer patients. Methods A gold standard dataset consisting of 3011 radiology reports from 361 lung cancer patients treated at the Veterans Health Administration from 2008 to 2016 was manually created by an abstractor coding image type, image indication, and image findings. Computerized queries using a text search tool were performed to code reports. The primary endpoint of query performance was evaluated by sensitivity, positive predictive value (PPV), and F1 score. The secondary endpoint of efficiency compared semi-automated abstraction time to manual abstraction time using a separate dataset and the Wilcoxon rank-sum test. Results Query for image type demonstrated the highest sensitivity of 85%, PPV 95%, and F1 score 0.90. Query for image indication demonstrated sensitivity 72%, PPV 70%, and F1 score 0.71. The image findings queries ranged from sensitivity 75–85%, PPV 23–25%, and F1 score 0.36–0.37. Semi-automated abstraction with our best performing query (image type) improved abstraction times by 68% per patient compared to manual abstraction alone (from median 21.5 min (interquartile range 16.0) to 6.9 min (interquartile range 9.5), p < 0.005). Conclusions Semi-automated abstraction using the best performing query of image type improved abstraction efficiency while preserving data accuracy. The computerized query acts as a pre-processing tool for manual abstraction by restricting effort to relevant images. Determining image indication and findings requires the addition of manual review for a semi-automatic abstraction approach in order to ensure data accuracy.

Funder

Health Services Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3