Combining data augmentation and domain information with TENER model for Clinical Event Detection

Author:

Zhang ZhichangORCID,Liu Dan,Zhang Minyu,Qin Xiaohui

Abstract

Abstract Background In recent years, with the development of artificial intelligence, the use of deep learning technology for clinical information extraction has become a new trend. Clinical Event Detection (CED) as its subtask has attracted the attention from academia and industry. However, directly applying the advancements in deep learning to CED task often yields unsatisfactory results. The main reasons are due to the following two points: (1) A great number of obscure professional terms in the electronic medical record leads to poor recognition performance of model. (2) The scarcity of datasets required for the task leads to poor model robustness. Therefore, it is urgent to solve these two problems to improve model performance. Methods This paper proposes a combining data augmentation and domain information with TENER Model for Clinical Event Detection. Results We use two evaluation metrics to compare the overall performance of the proposed model with the existing model on the 2012 i2b2 challenge dataset. Experimental results demonstrate that our proposed model achieves the best F1-score of 80.26%, type accuracy of 93% and Span F1-score of 90.33%, and outperforms the state-of-the-art approaches. Conclusions This paper proposes a multi-granularity information fusion encoder-decoder framework, which applies the TENER model to the CED task for the first time. It uses the pre-trained language model (BioBERT) to generate word-level features, solving the problem of a great number of obscure professional terms in the electronic medical record lead to poor recognition performance of model. In addition, this paper proposes a new data augmentation method for sequence labeling tasks, solving the problem of the scarcity of datasets required for the task leads to poor model robustness.

Funder

Key Science and Technology Foundation of Gansu Province

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clinical utility of a deep-learning mortality prediction model for cardiac surgery decision making;The Journal of Thoracic and Cardiovascular Surgery;2023-12

2. Data-driven drug discovery for drug repurposing;Folia Pharmacologica Japonica;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3