Abstract
AbstractCross-validation (CV) is a resampling approach to evaluate machine learning models when sample size is limited. The number of all possible combinations of folds for the training data, known as CV rounds, are often very small in leave-one-out CV. Alternatively, Monte Carlo cross-validation (MCCV) can be performed with a flexible number of simulations when computational resources are feasible for a study with limited sample size. We conduct extensive simulation studies to compare accuracy between MCCV and CV with the same number of simulations for a study with binary outcome (e.g., disease progression or not). Accuracy of MCCV is generally higher than CV although the gain is small. They have similar performance when sample size is large. Meanwhile, MCCV is going to provide reliable performance metrics as the number of simulations increases. Two real examples are used to illustrate the comparison between MCCV and CV.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference42 articles.
1. Aisen PS, Petersen RC, Donohue MC, Gamst A, Raman R, Thomas RG, Walter S, Trojanowski JQ, Shaw LM, Beckett LA, Jack CR, Jagust W, Toga AW, Saykin AJ, Morris JC, Green RC, Weiner MW. Clinical core of the Alzheimer’s disease neuroimaging initiative: progress and plans. Alzheimers Dement. 2010;6(3):239–46.
2. Cummings J, Zhong K. Alzheimer’s disease drug develoment & emerging therapies. Pract Neurol, 2019:95–99.
3. Cummings JL, Fulkerson N. Neurodegeneration research: advances in clinical translational neuroscience infrastructure and methods. Alzheimer’s Dement Transl Res Clin Interv. 2018;4:326–9.
4. D’Agostino R, Pearson ES. Tests for departure from normality. Biometrika. 1973;60(3):613–22.
5. Ezzati A, Lipton RB. Machine learning predictive models can improve efficacy of clinical trials for Alzheimer’s disease. J Alzheimers Dis. 2020;74(1):55–63.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献