Utilizing machine learning algorithms to predict subject genetic mutation class from in silico models of neuronal networks

Author:

Kress Gavin T.ORCID,Chan FionORCID,Garcia Claudia A.ORCID,Merrifield Warren S.ORCID

Abstract

Abstract Background Epilepsy is the fourth-most common neurological disorder, affecting an estimated 50 million patients globally. Nearly 40% of patients have uncontrolled seizures yet incur 80% of the cost. Anti-epileptic drugs commonly result in resistance and reversion to uncontrolled drug-resistant epilepsy and are often associated with significant adverse effects. This has led to a trial-and-error system in which physicians spend months to years attempting to identify the optimal therapeutic approach. Objective To investigate the potential clinical utility from the context of optimal therapeutic prediction of characterizing cellular electrophysiology. It is well-established that genomic data alone can sometimes be predictive of effective therapeutic approach. Thus, to assess the predictive power of electrophysiological data, machine learning strategies are implemented to predict a subject’s genetically defined class in an in silico model using brief electrophysiological recordings obtained from simulated neuronal networks. Methods A dynamic network of isogenic neurons is modeled in silico for 1-s for 228 dynamically modeled patients falling into one of three categories: healthy, general sodium channel gain of function, or inhibitory sodium channel loss of function. Data from previous studies investigating the electrophysiological and cellular properties of neurons in vitro are used to define the parameters governing said models. Ninety-two electrophysiological features defining the nature and consistency of network connectivity, activity, waveform shape, and complexity are extracted for each patient network and t-tests are used for feature selection for the following machine learning algorithms: Neural Network, Support Vector Machine, Gaussian Naïve Bayes Classifier, Decision Tree, and Gradient Boosting Decision Tree. Finally, their performance in accurately predicting which genetic category the subjects fall under is assessed. Results Several machine learning algorithms excel in using electrophysiological data from isogenic neurons to accurately predict genetic class with a Gaussian Naïve Bayes Classifier predicting healthy, gain of function, and overall, with the best accuracy, area under the curve, and F1. The Gradient Boosting Decision Tree performs the best for loss of function models indicated by the same metrics. Conclusions It is possible for machine learning algorithms to use electrophysiological data to predict clinically valuable metrics such as optimal therapeutic approach, especially when combining several models.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3