Automatic RadLex coding of Chinese structured radiology reports based on text similarity ensemble

Author:

Chen Yani,Nan Shan,Tian Qi,Cai Hailing,Duan Huilong,Lu XudongORCID

Abstract

Abstract Background Standardized coding of plays an important role in radiology reports’ secondary use such as data analytics, data-driven decision support, and personalized medicine. RadLex, a standard radiological lexicon, can reduce subjective variability and improve clarity in radiology reports. RadLex coding of radiology reports is widely used in many countries, but translation and localization of RadLex in China are far from being established. Although automatic RadLex coding is a common way for non-standard radiology reports, the high-accuracy cross-language RadLex coding is hardly achieved due to the limitation of up-to-date auto-translation and text similarity algorithms and still requires further research. Methods We present an effective approach that combines a hybrid translation and a Multilayer Perceptron weighting text similarity ensemble algorithm for automatic RadLex coding of Chinese structured radiology reports. Firstly, a hybrid way to integrate Google neural machine translation and dictionary translation helps to optimize the translation of Chinese radiology phrases to English. The dictionary is made up of 21,863 Chinese–English radiological term pairs extracted from several free medical dictionaries. Secondly, four typical text similarity algorithms are introduced, which are Levenshtein distance, Jaccard similarity coefficient, Word2vec Continuous bag-of-words model, and WordNet Wup similarity algorithms. Lastly, the Multilayer Perceptron model has been used to synthesize the contextual, lexical, character and syntactical information of four text similarity algorithms to promote precision, in which four similarity scores of two terms are taken as input and the output presents whether the two terms are synonyms. Results The results show the effectiveness of the approach with an F1-score of 90.15%, a precision of 91.78% and a recall of 88.59%. The hybrid translation algorithm has no negative effect on the final coding, F1-score has increased by 21.44% and 8.12% compared with the GNMT algorithm and dictionary translation. Compared with the single similarity, the result of the MLP weighting similarity algorithm is satisfactory that has a 4.48% increase compared with the best single similarity algorithm, WordNet Wup. Conclusions The paper proposed an innovative automatic cross-language RadLex coding approach to solve the standardization of Chinese structured radiology reports, that can be taken as a reference to automatic cross-language coding.

Funder

National Key Research and development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference35 articles.

1. Ganeshan D, Duong P-AT, Probyn L, Lenchik L, McArthur TA, Retrouvey M, Ghobadi EH, Desouches SL, Pastel D, Francis IR. Structured reporting in radiology. Acad Radiol. 2018;25(1):66–73.

2. Cramer JA, Eisenmenger LB, Pierson NS, Dhatt HS, Heilbrun ME. Structured and templated reporting: an overview. Appl Radiol. 2014;43(8):18–21.

3. Langlotz CP. RadLex: a new method for indexing online educational materials. Radiol Soc North Am. 2006;26:1595–7.

4. Stanfill MH, Williams M, Fenton SH, Jenders RA, Hersh WR. A systematic literature review of automated clinical coding and classification systems. J Am Med Inform Assoc. 2010;17(6):646–51.

5. Pereira S, Névéol A, Massari P, Joubert M, Darmoni S. Construction of a semi-automated ICD-10 coding help system to optimize medical and economic coding. Stud Health Technol Inform. 2006;124:845–50.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Text Similarity Calculation Method Based on Optimized Cosine Distance;2022 International Conference on Electronics and Devices, Computational Science (ICEDCS);2022-09

2. A Novel Discrimination Structure for Assessing Text Semantic Similarity;網際網路技術學刊;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3