Understanding the complexity of sepsis mortality prediction via rule discovery and analysis: a pilot study

Author:

Wu Ying,Huang Shuai,Chang Xiangyu

Abstract

Abstract Background Sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, has become one of the major causes of death in Intensive Care Units (ICUs). The heterogeneity and complexity of this syndrome lead to the absence of golden standards for its diagnosis, treatment, and prognosis. The early prediction of in-hospital mortality for sepsis patients is not only meaningful to medical decision making, but more importantly, relates to the well-being of patients. Methods In this paper, a rule discovery and analysis (rule-based) method is used to predict the in-hospital death events of 2021 ICU patients diagnosed with sepsis using the MIMIC-III database. The method mainly includes two phases: rule discovery phase and rule analysis phase. In the rule discovery phase, the RuleFit method is employed to mine multiple hidden rules which are capable to predict individual in-hospital death events. In the rule analysis phase, survival analysis and decomposition analysis are carried out to test and justify the risk prediction ability of these rules. Then by leveraging a subset of these rules, we establish a prediction model that is both more accurate at the in-hospital death prediction task and more interpretable than most comparable methods. Results In our experiment, RuleFit generates 77 risk prediction rules, and the average area under the curve (AUC) of the prediction model based on 62 of these rules reaches 0.781 ($$\pm 0.018$$ ± 0.018 ) which is comparable to or even better than the AUC of existing methods (i.e., commonly used medical scoring system and benchmark machine learning models). External validation of the prediction power of these 62 rules on another 1468 sepsis patients not included in MIMIC-III in ICU provides further supporting evidence for the superiority of the rule-based method. In addition, we discuss and explain in detail the rules with better risk prediction ability. Glasgow Coma Scale (GCS), serum potassium, and serum bilirubin are found to be the most important risk factors for predicting patient death. Conclusion Our study demonstrates that, with the rule-based method, we could not only make accurate prediction on in-hospital death events of sepsis patients, but also reveal the complex relationship between sepsis-related risk factors through the rules themselves, so as to improve our understanding of the complexity of sepsis as well as its population.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference83 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3