Use of multidimensional item response theory methods for dementia prevalence prediction: an example using the Health and Retirement Survey and the Aging, Demographics, and Memory Study

Author:

,Nichols Emma,Abd-Allah Foad,Abdoli Amir,Abualhasan Ahmed,Abu-Gharbieh Eman,Afshin Ashkan,Akinyemi Rufus Olusola,Alanezi Fahad Mashhour,Alipour Vahid,Almasi-Hashiani Amir,Arabloo Jalal,Ashraf-Ganjouei Amir,Ayano Getinet,Ayuso-Mateos Jose L.,Baig Atif Amin,Banach Maciej,Barboza Miguel A.,Barker-Collo Suzanne Lyn,Baune Bernhard T.,Bhagavathula Akshaya Srikanth,Bhattacharyya Krittika,Bijani Ali,Biswas Atanu,Boloor Archith,Brayne Carol,Brenner Hermann,Burkart Katrin,Burugina Nagaraja Sharath,Carvalho Felix,Castro-de-Araujo Luis F. S.,Catalá-López Ferrán,Cerin Ester,Cherbuin Nicolas,Chu Dinh-Toi,Dai Xiaochen,de Sá-Junior Antonio Reis,Djalalinia Shirin,Douiri Abdel,Edvardsson David,El-Jaafary Shaimaa I.,Eskandarieh Sharareh,Faro Andre,Farzadfar Farshad,Feigin Valery L.,Fereshtehnejad Seyed-Mohammad,Fernandes Eduarda,Ferrara Pietro,Filip Irina,Fischer Florian,Gaidhane Shilpa,Galluzzo Lucia,Gebremeskel Gebreamlak Gebremedhn,Ghashghaee Ahmad,Gialluisi Alessandro,Gnedovskaya Elena V.,Golechha Mahaveer,Gupta Rajeev,Hachinski Vladimir,Haider Mohammad Rifat,Haile Teklehaimanot Gereziher,Hamiduzzaman Mohammad,Hankey Graeme J.,Hay Simon I.,Heidari Golnaz,Heidari-Soureshjani Reza,Ho Hung Chak,Househ Mowafa,Hwang Bing-Fang,Iacoviello Licia,Ilesanmi Olayinka Stephen,Ilic Irena M.,Ilic Milena D.,Irvani Seyed Sina Naghibi,Iwagami Masao,Iyamu Ihoghosa Osamuyi,Jha Ravi Prakash,Kalani Rizwan,Karch André,Kasa Ayele Semachew,Khader Yousef Saleh,Khan Ejaz Ahmad,Khatib Mahalaqua Nazli,Kim Yun Jin,Kisa Sezer,Kisa Adnan,Kivimäki Mika,Koyanagi Ai,Kumar Manasi,Landires Iván,Lasrado Savita,Li Bingyu,Lim Stephen S.,Liu Xuefeng,Madhava Kunjathur Shilpashree,Majeed Azeem,Malik Preeti,Mehndiratta Man Mohan,Menezes Ritesh G.,Mohammad Yousef,Mohammed Salahuddin,Mokdad Ali H.,Moni Mohammad Ali,Nagel Gabriele,Naveed Muhammad,Nayak Vinod C.,Nguyen Cuong Tat,Nguyen Huong Lan Thi,Nunez-Samudio Virginia,Olagunju Andrew T.,Ostroff Samuel M.,Otstavnov Nikita,Owolabi Mayowa O.,Pashazadeh Kan Fatemeh,Patel Urvish K.,Phillips Michael R.,Piradov Michael A.,Pond Constance Dimity,Pottoo Faheem Hyder,Prada Sergio I.,Radfar Amir,Rahim Fakher,Rana Juwel,Rashedi Vahid,Rawaf Salman,Rawaf David Laith,Reinig Nickolas,Renzaho Andre M. N.,Rezaei Nima,Rezapour Aziz,Romoli Michele,Roshandel Gholamreza,Sachdev Perminder S.,Sahebkar Amirhossein,Sahraian Mohammad Ali,Samaei Mehrnoosh,Saylan Mete,Sha Feng,Shaikh Masood Ali,Shibuya Kenji,Shigematsu Mika,Shin Jae Il,Shiri Rahman,Silva Diego Augusto Santos,Singh Jasvinder A.,Singhal Deepika,Skryabin Valentin Yurievich,Skryabina Anna Aleksandrovna,Soheili Amin,Sotoudeh Houman,Spurlock Emma Elizabeth,Szoeke Cassandra E. I.,Tabarés-Seisdedos Rafael,Taddele Biruk Wogayehu,Tovani-Palone Marcos Roberto,Tsegaye Gebiyaw Wudie,Vacante Marco,Venketasubramanian Narayanaswamy,Vidale Simone,Vlassov Vasily,Vu Giang Thu,Wang Yuan-Pang,Weiss Jordan,Weldemariam Abrha Hailay,Westerman Ronny,Wimo Anders,Winkler Andrea Sylvia,Wu Chenkai,Yadollahpour Ali,Yesiltepe Metin,Yonemoto Naohiro,Yu Chuanhua,Zastrozhin Mikhail Sergeevich,Zastrozhina Anasthasia,Zhang Zhi-Jiang,Murray Christopher J. L.,Vos Theo

Abstract

Abstract Background Data sparsity is a major limitation to estimating national and global dementia burden. Surveys with full diagnostic evaluations of dementia prevalence are prohibitively resource-intensive in many settings. However, validation samples from nationally representative surveys allow for the development of algorithms for the prediction of dementia prevalence nationally. Methods Using cognitive testing data and data on functional limitations from Wave A (2001–2003) of the ADAMS study (n = 744) and the 2000 wave of the HRS study (n = 6358) we estimated a two-dimensional item response theory model to calculate cognition and function scores for all individuals over 70. Based on diagnostic information from the formal clinical adjudication in ADAMS, we fit a logistic regression model for the classification of dementia status using cognition and function scores and applied this algorithm to the full HRS sample to calculate dementia prevalence by age and sex. Results Our algorithm had a cross-validated predictive accuracy of 88% (86–90), and an area under the curve of 0.97 (0.97–0.98) in ADAMS. Prevalence was higher in females than males and increased over age, with a prevalence of 4% (3–4) in individuals 70–79, 11% (9–12) in individuals 80–89 years old, and 28% (22–35) in those 90 and older. Conclusions Our model had similar or better accuracy as compared to previously reviewed algorithms for the prediction of dementia prevalence in HRS, while utilizing more flexible methods. These methods could be more easily generalized and utilized to estimate dementia prevalence in other national surveys.

Funder

Bill and Melinda Gates Foundation

gates ventures

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3