Author:
Chan Ming-Cheng,Pai Kai-Chih,Su Shao-An,Wang Min-Shian,Wu Chieh-Liang,Chao Wen-Cheng
Abstract
Abstract
Background
Machine learning (ML) model is increasingly used to predict short-term outcome in critically ill patients, but the study for long-term outcome is sparse. We used explainable ML approach to establish 30-day, 90-day and 1-year mortality prediction model in critically ill ventilated patients.
Methods
We retrospectively included patients who were admitted to intensive care units during 2015–2018 at a tertiary hospital in central Taiwan and linked with the Taiwanese nationwide death registration data. Three ML models, including extreme gradient boosting (XGBoost), random forest (RF) and logistic regression (LR), were used to establish mortality prediction model. Furthermore, we used feature importance, Shapley Additive exPlanations (SHAP) plot, partial dependence plot (PDP), and local interpretable model-agnostic explanations (LIME) to explain the established model.
Results
We enrolled 6994 patients and found the accuracy was similar among the three ML models, and the area under the curve value of using XGBoost to predict 30-day, 90-day and 1-year mortality were 0.858, 0.839 and 0.816, respectively. The calibration curve and decision curve analysis further demonstrated accuracy and applicability of models. SHAP summary plot and PDP plot illustrated the discriminative point of APACHE (acute physiology and chronic health exam) II score, haemoglobin and albumin to predict 1-year mortality. The application of LIME and SHAP force plots quantified the probability of 1-year mortality and algorithm of key features at individual patient level.
Conclusions
We used an explainable ML approach, mainly XGBoost, SHAP and LIME plots to establish an explainable 1-year mortality prediction ML model in critically ill ventilated patients.
Funder
Ministry of Science and Technology Taiwan
Taichung Veterans General Hospital
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献