Hospital acquired pressure injury prediction in surgical critical care patients

Author:

Alderden JennyORCID,Drake Kathryn P.,Wilson Andrew,Dimas Jonathan,Cummins Mollie R.,Yap Tracey L.

Abstract

Abstract Background Hospital-acquired pressure injuries (HAPrIs) are areas of damage to the skin occurring among 5–10% of surgical intensive care unit (ICU) patients. HAPrIs are mostly preventable; however, prevention may require measures not feasible for every patient because of the cost or intensity of nursing care. Therefore, recommended standards of practice include HAPrI risk assessment at routine intervals. However, no HAPrI risk-prediction tools demonstrate adequate predictive validity in the ICU population. The purpose of the current study was to develop and compare models predicting HAPrIs among surgical ICU patients using electronic health record (EHR) data. Methods In this retrospective cohort study, we obtained data for patients admitted to the surgical ICU or cardiovascular surgical ICU between 2014 and 2018 via query of our institution's EHR. We developed predictive models utilizing three sets of variables: (1) variables obtained during routine care + the Braden Scale (a pressure-injury risk-assessment scale); (2) routine care only; and (3) a parsimonious set of five routine-care variables chosen based on availability from an EHR and data warehouse perspective. Aiming to select the best model for predicting HAPrIs, we split each data set into standard 80:20 train:test sets and applied five classification algorithms. We performed this process on each of the three data sets, evaluating model performance based on continuous performance on the receiver operating characteristic curve and the F1 score. Results Among 5,101 patients included in analysis, 333 (6.5%) developed a HAPrI. F1 scores of the five classification algorithms proved to be a valuable evaluation metric for model performance considering the class imbalance. Models developed with the parsimonious data set had comparable F1 scores to those developed with the larger set of predictor variables. Conclusions Results from this study show the feasibility of using EHR data for accurately predicting HAPrIs and that good performance can be found with a small group of easily accessible predictor variables. Future study is needed to test the models in an external sample.

Funder

American Association of Critical-Care Nurses

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference37 articles.

1. Padula WV, Delarmente BA. The national cost of hospital-acquired pressure injuries in the United States. Int Wound J. 2019;16(3):634–40.

2. Centers for Medicare & Medicaid Services. Eliminating serious, preventable, and costly medical errors—never events. 2006. https://www.cms.gov/newsroom/fact-sheets/eliminating-serious-preventable-and-costly-medical-errors-never-events. Accessed 16 Apr 2020.

3. Alderden J, Rondinelli J, Pepper G, Cummins M, Whitney J. Risk factors for pressure injuries among critical care patients: a systematic review. Int J Nurs Stud. 2017;71:97–114.

4. Chen HL, Chen XY, Wu J. The incidence of pressure ulcers in surgical patients of the last 5 years: a systematic review. Wounds. 2012;24(9):234–41.

5. Emily Haesler, editor. European Pressure Ulcer Advisory Panel, National Pressure Injury Advisory Panel, and Pan Pacific Injury Alliance. Prevention and treatment of pressure ulcers/injuries: clinical practice guideline. The international guideline. EPUAP/NPIAP/PPPIA; 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3