Machine learning approaches to predict peak demand days of cardiovascular admissions considering environmental exposure

Author:

Qiu HangORCID,Luo Lin,Su Ziqi,Zhou Li,Wang Liya,Chen Yucheng

Abstract

Abstract Background Accumulating evidence has linked environmental exposure, such as ambient air pollution and meteorological factors, to the development and severity of cardiovascular diseases (CVDs), resulting in increased healthcare demand. Effective prediction of demand for healthcare services, particularly those associated with peak events of CVDs, can be useful in optimizing the allocation of medical resources. However, few studies have attempted to adopt machine learning approaches with excellent predictive abilities to forecast the healthcare demand for CVDs. This study aims to develop and compare several machine learning models in predicting the peak demand days of CVDs admissions using the hospital admissions data, air quality data and meteorological data in Chengdu, China from 2015 to 2017. Methods Six machine learning algorithms, including logistic regression (LR), support vector machine (SVM), artificial neural network (ANN), random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM) were applied to build the predictive models with a unique feature set. The area under a receiver operating characteristic curve (AUC), logarithmic loss function, accuracy, sensitivity, specificity, precision, and F1 score were used to evaluate the predictive performances of the six models. Results The LightGBM model exhibited the highest AUC (0.940, 95% CI: 0.900–0.980), which was significantly higher than that of LR (0.842, 95% CI: 0.783–0.901), SVM (0.834, 95% CI: 0.774–0.894) and ANN (0.890, 95% CI: 0.836–0.944), but did not differ significantly from that of RF (0.926, 95% CI: 0.879–0.974) and XGBoost (0.930, 95% CI: 0.878–0.982). In addition, the LightGBM has the optimal logarithmic loss function (0.218), accuracy (91.3%), specificity (94.1%), precision (0.695), and F1 score (0.725). Feature importance identification indicated that the contribution rate of meteorological conditions and air pollutants for the prediction was 32 and 43%, respectively. Conclusion This study suggests that ensemble learning models, especially the LightGBM model, can be used to effectively predict the peak events of CVDs admissions, and therefore could be a very useful decision-making tool for medical resource management.

Funder

the National Natural Science Foundation of China

the Key Research and Development Program of Sichuan Province

the 1·3·5 Project for Disciplines of Excellence–Clinical Research Incubation Project, West China Hospital, Sichuan University

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3