Abstract
Abstract
Background
Treatment effect prediction (TEP) plays an important role in disease management by ensuring that the expected clinical outcomes are obtained after performing specialized and sophisticated treatments on patients given their personalized clinical status. In recent years, the wide adoption of electronic health records (EHRs) has provided a comprehensive data source for intelligent clinical applications including the TEP investigated in this study.
Method
We examined the problem of using a large volume of heterogeneous EHR data to predict treatment effects and developed an adversarial deep treatment effect prediction model to address the problem. Our model employed two auto-encoders for learning the representative and discriminative features of both patient characteristics and treatments from EHR data. The discriminative power of the learned features was further enhanced by decoding the correlational information between the patient characteristics and subsequent treatments by means of a generated adversarial learning strategy. Thereafter, a logistic regression layer was appended on the top of the resulting feature representation layer for TEP.
Result
The proposed model was evaluated on two real clinical datasets collected from the cardiology department of a Chinese hospital. In particular, on acute coronary syndrome (ACS) dataset, the proposed adversarial deep treatment effect prediction (ADTEP) (0.662) exhibited 1.4, 2.2, and 6.3% performance gains in terms of the area under the ROC curve (AUC) over deep treatment effect prediction (DTEP) (0.653), logistic regression (LR) (0.648), and support vector machine (SVM) (0.621), respectively. As for heart failure (HF) case study, the proposed ADTEP also outperformed all benchmarks. The experimental results demonstrated that our proposed model achieved competitive performance compared to state-of-the-art models in tackling the TEP problem.
Conclusion
In this work, we propose a novel model to address the TEP problem by utilizing a large volume of observational data from EHR. With adversarial learning strategy, our proposed model can further explore the correlational information between patient statuses and treatments to extract more robust and discriminative representation of patient samples from their EHR data. Such representation finally benefits the model on TEP. The experimental results of two case studies demonstrate the superiority of our proposed method compared to state-of-the-art methods.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献