Author:
Asghari Varzaneh Zahra,Shanbehzadeh Mostafa,Kazemi-Arpanahi Hadi
Abstract
Abstract
Background
Aging is a chief risk factor for most chronic illnesses and infirmities. The growth in the aged population increases medical costs, thus imposing a heavy financial burden on families and communities. Successful aging (SA) is a positive and qualitative view of aging. From a biomedical perspective, SA is defined as the absence of diseases or disability disorders. This is distinct from normal aging, which is associated with age-related deterioration in physical and cognitive functions. From a social perspective, SA highlights life satisfaction and individual well-being, usually attained through socialization. It is an abstract and multidimensional concept surrounded by imprecision about its definition and measurement. Our study attempted to find the most effective features of SA as defined by Rowe and Kahn's theory. The determined features were used as input parameters of six machine learning (ML) algorithms to create and validate predictive models for SA.
Methods
In this retrospective study, the raw data set was first pre-processed; then, based on the data of a sample of 983, five basic ML techniques including artificial neural network, decision tree, support vector machine, Naïve Bayes, and k-nearest neighbors (K-NN) with one ensemble method (that gathers 30 K-NN algorithms as weak learners) were trained. Finally, the prediction result was yielded using the majority vote method based on the output of the generated base models.
Results
The experimental results revealed that the predictive system has been more successful in predicting SA with a 93% precision, 92.40% specificity, 87.80% sensitivity, 90.31% F-measure, 89.62% accuracy, and a ROC of 96.10%, using a five-fold cross-validation procedure.
Conclusions
Our results showed that ML techniques potentially have satisfactory performance in supporting the SA-related decisions of social and health policymakers. The KNN-based ensemble algorithm is superior to the other ML models in classifying people into SA and non-SA classes.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference80 articles.
1. Lin Y-H, Chen Y-C, Tseng Y-C. Tsai S-t, Tseng Y-H: Physical activity and successful aging among middle-aged and older adults: a systematic review and meta-analysis of cohort studies. Aging (Albany NY). 2020;12(9):7704.
2. Estebsari F, Dastoorpoor M, Khalifehkandi ZR, Nouri A, Mostafaei D, Hosseini M, Esmaeili R, Aghababaeian H. The concept of successful aging: a review article. Curr Aging Sci. 2020;13(1):4–10.
3. Berhan Y, Berhan A. A meta-analysis of socio-demographic factors for perinatal mortality in developing countries: a subgroup analysis of the national surveys and small scale studies. Ethiop J Health Sci. 2014;24(0):41. https://doi.org/10.4314/ejhs.v24i0.5S.
4. Chandraa CE, Abdullaha S. Forecasting mortality trend of indonesian old aged population with bayesian method. Int J Adv Sci Eng Inf Technol. 2022;12(2):580–8.
5. Seyda Seydel G, Kucukoglu O, Altinbasv A, Demir OO, Yilmaz S, Akkiz H, Otan E, Sowa JP, Canbay A. Economic growth leads to increase of obesity and associated hepatocellular carcinoma in developing countries. Ann Hepatol. 2016;15(5):662–72.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献