A deep learning approach for identifying cancer survivors living with post-traumatic stress disorder on Twitter

Author:

Ismail Nur HafiezaORCID,Liu Ninghao,Du Mengnan,He Zhe,Hu Xia

Abstract

Abstract Background Emotions after surviving cancer can be complicated. The survivors may have gained new strength to continue life, but some of them may begin to deal with complicated feelings and emotional stress due to trauma and fear of cancer recurrence. The widespread use of Twitter for socializing has been the alternative medium for data collection compared to traditional studies of mental health, which primarily depend on information taken from medical staff with their consent. These social media data, to a certain extent, reflect the users’ psychological state. However, Twitter also contains a mix of noisy and genuine tweets. The process of manually identifying genuine tweets is expensive and time-consuming. Methods We stream the data using cancer as a keyword to filter the tweets with cancer-free and use post-traumatic stress disorder (PTSD) related keywords to reduce the time spent on the annotation task. Convolutional Neural Network (CNN) learns the representations of the input to identify cancer survivors with PTSD. Results The results present that the proposed CNN can effectively identify cancer survivors with PTSD. The experiments on real-world datasets show that our model outperforms the baselines and correctly classifies the new tweets. Conclusions PTSD is one of the severe anxiety disorders that could affect individuals who are exposed to traumatic events, including cancer. Cancer survivors are at risk of short-term or long-term effects on physical and psycho-social well-being. Therefore, the evaluation and treatment of PTSD are essential parts of cancer survivorship care. It will act as an alarming system by detecting the PTSD presence based on users’ postings on Twitter.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference37 articles.

1. Alkan A, et al. Breast cancer survivors suffer from persistent postmastectomy pain syndrome and posttraumatic stress disorder (ORTHUS study): a study of the palliative care working committee of the Turkish Oncology Group (TOG). Support Care Cancer. 2016;24:3747.

2. Akechi T, et al. Major depression, adjustment disorders, and post-traumatic stress disorder in terminally ill cancer patients: associated and predictive factors. J Clin Oncol. 2004;22:1957.

3. National Collaborating Centre for Mental Health. UK, Post-traumatic stress disorder: The management of PTSD in adults and children in primary and secondary care (Gaskell). 2005.

4. Proceedings of the 5th Annual ACM Web Science Conference (ACM);M De Choudhury,2013

5. Proceedings of the 2013 conference on Computer supported cooperative work (ACM);M De Choudhury,2013

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3