The automatic detection of diabetic kidney disease from retinal vascular parameters combined with clinical variables using artificial intelligence in type-2 diabetes patients

Author:

Shi Shaomin,Gao Ling,Zhang Juan,Zhang Baifang,Xiao Jing,Xu Wan,Tian Yuan,Ni Lihua,Wu Xiaoyan

Abstract

Abstract Background Diabetic kidney disease (DKD) has become the largest cause of end-stage kidney disease. Early and accurate detection of DKD is beneficial for patients. The present detection depends on the measurement of albuminuria or the estimated glomerular filtration rate, which is invasive and not optimal; therefore, new detection tools are urgently needed. Meanwhile, a close relationship between diabetic retinopathy and DKD has been reported; thus, we aimed to develop a novel detection algorithm for DKD using artificial intelligence technology based on retinal vascular parameters combined with several easily available clinical parameters in patients with type-2 diabetes. Methods A total of 515 consecutive patients with type-2 diabetes mellitus from Xiangyang Central Hospital were included. Patients were stratified by DKD diagnosis and split randomly into either the training set (70%, N = 360) or the testing set (30%, N = 155) (random seed = 1). Data from the training set were used to develop the machine learning algorithm (MLA), while those from the testing set were used to validate the MLA. Model performances were evaluated. Results The MLA using the random forest classifier presented optimal performance compared with other classifiers. When validated, the accuracy, sensitivity, specificity, F1 score, and AUC for the optimal model were 84.5%(95% CI 83.3–85.7), 84.5%(82.3–86.7), 84.5%(82.7–86.3), 0.845(0.831–0.859), and 0.914(0.903–0.925), respectively. Conclusions A new machine learning algorithm for DKD diagnosis based on fundus images and 8 easily available clinical parameters was developed, which indicated that retinal vascular changes can assist in DKD screening and detection.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3