Perturbing BEAMs: EEG adversarial attack to deep learning models for epilepsy diagnosing

Author:

Yu Jianfeng,Qiu Kai,Wang Pengju,Su Caixia,Fan Yufeng,Cao Yongfeng

Abstract

AbstractDeep learning models have been widely used in electroencephalogram (EEG) analysis and obtained excellent performance. But the adversarial attack and defense for them should be thoroughly studied before putting them into safety-sensitive use. This work exposes an important safety issue in deep-learning-based brain disease diagnostic systems by examining the vulnerability of deep learning models for diagnosing epilepsy with brain electrical activity mappings (BEAMs) to white-box attacks. It proposes two methods, Gradient Perturbations of BEAMs (GPBEAM), and Gradient Perturbations of BEAMs with Differential Evolution (GPBEAM-DE), which generate EEG adversarial samples, for the first time by perturbing BEAMs densely and sparsely respectively, and find that these BEAMs-based adversarial samples can easily mislead deep learning models. The experiments use the EEG data from CHB-MIT dataset and two types of victim models each of which has four different deep neural network (DNN) architectures. It is shown that: (1) these BEAM-based adversarial samples produced by the proposed methods in this paper are aggressive to BEAM-related victim models which use BEAMs as the input to internal DNN architectures, but unaggressive to EEG-related victim models which have raw EEG as the input to internal DNN architectures, with the top success rate of attacking BEAM-related models up to 0.8 while the top success rate of attacking EEG-related models only 0.01; (2) GPBEAM-DE outperforms GPBEAM when they are attacking the same victim model under a same distortion constraint, with the top attack success rate 0.8 for the former and 0.59 for the latter; (3) a simple modification to the GPBEAM/GPBEAM-DE will make it have aggressiveness to both BEAMs-related and EEG-related models (with top attack success rate 0.8 and 0.64), and this capacity enhancement is done without any cost of distortion increment. The goal of this study is not to attack any of EEG medical diagnostic systems, but to raise concerns about the safety of deep learning models and hope to lead to a safer design.

Funder

Guizhou Provincial Science and Technology Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3