A generalizable and interpretable model for mortality risk stratification of sepsis patients in intensive care unit

Author:

Zhuang Jinhu,Huang Haofan,Jiang Song,Liang Jianwen,Liu Yong,Yu Xiaxia

Abstract

Abstract Purpose This study aimed to construct a mortality model for the risk stratification of intensive care unit (ICU) patients with sepsis by applying a machine learning algorithm. Methods Adult patients who were diagnosed with sepsis during admission to ICU were extracted from MIMIC-III, MIMIC-IV, eICU, and Zigong databases. MIMIC-III was used for model development and internal validation. The other three databases were used for external validation. Our proposed model was developed based on the Extreme Gradient Boosting (XGBoost) algorithm. The generalizability, discrimination, and validation of our model were evaluated. The Shapley Additive Explanation values were used to interpret our model and analyze the contribution of individual features. Results A total of 16,741, 15,532, 22,617, and 1,198 sepsis patients were extracted from the MIMIC-III, MIMIC-IV, eICU, and Zigong databases, respectively. The proposed model had an area under the receiver operating characteristic curve (AUROC) of 0.84 in the internal validation, which outperformed all the traditional scoring systems. In the external validations, the AUROC was 0.87 in the MIMIC-IV database, better than all the traditional scoring systems; the AUROC was 0.83 in the eICU database, higher than the Simplified Acute Physiology Score III and Sequential Organ Failure Assessment (SOFA),equal to 0.83 of the Acute Physiology and Chronic Health Evaluation IV (APACHE-IV), and the AUROC was 0.68 in the Zigong database, higher than those from the systemic inflammatory response syndrome and SOFA. Furthermore, the proposed model showed the best discriminatory and calibrated capabilities and had the best net benefit in each validation. Conclusions The proposed algorithm based on XGBoost and SHAP-value feature selection had high performance in predicting the mortality of sepsis patients within 24 h of ICU admission.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3