Development of machine learning models to predict perioperative blood transfusion in hip surgery

Author:

Zang Han,Hu Ai,Xu Xuanqi,Ren He,Xu Li

Abstract

Abstract Background Allogeneic Blood transfusion is common in hip surgery but is associated with increased morbidity. Accurate prediction of transfusion risk is necessary for minimizing blood product waste and preoperative decision-making. The study aimed to develop machine learning models for predicting perioperative blood transfusion in hip surgery and identify significant risk factors. Methods Data of patients undergoing hip surgery between January 2013 and October 2021 in the Peking Union Medical College Hospital were collected to train and test predictive models. The primary outcome was perioperative red blood cell (RBC) transfusion within 72 h of surgery. Fourteen machine learning algorithms were established to predict blood transfusion risk incorporating patient demographic characteristics, preoperative laboratory tests, and surgical information. Discrimination, calibration, and decision curve analysis were used to evaluate machine learning models. SHapley Additive exPlanations (SHAP) was performed to interpret models. Results In this study, 2431 hip surgeries were included. The Ridge Classifier performed the best with an AUC = 0.85 (95% CI, 0.81 to 0.88) and a Brier score = 0.21. Patient-related risk factors included lower preoperative hemoglobin, American Society of Anesthesiologists (ASA) Physical Status > 2, anemia, lower preoperative fibrinogen, and lower preoperative albumin. Surgery-related risk factors included longer operation time, total hip arthroplasty, and autotransfusion. Conclusions The machine learning model developed in this study achieved high predictive performance using available variables for perioperative blood transfusion in hip surgery. The predictors identified could be helpful for risk stratification, preoperative optimization, and outcomes improvement.

Funder

National High Level Hospital Clinical Research Funding

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3