Development and validation of a nomogram for blood transfusion during intracranial aneurysm clamping surgery: a retrospective analysis

Author:

Xiao Shugen,Liu Fan,Yu Liyuan,Li Xiaopei,Ye Xihong,Gong Xingrui

Abstract

Abstract Purpose Intraoperative blood transfusion is associated with adverse events. We aimed to establish a machine learning model to predict the probability of intraoperative blood transfusion during intracranial aneurysm surgery. Methods Patients, who underwent intracranial aneurysm surgery in our hospital between January 2019 and December 2021 were enrolled. Four machine learning models were benchmarked and the best learning model was used to establish the nomogram, before conducting a discriminative assessment. Results A total of 375 patients were included for analysis in this model, among whom 108 received an intraoperative blood transfusion during the intracranial aneurysm surgery. The least absolute shrinkage selection operator identified six preoperative relative factors: hemoglobin, platelet, D-dimer, sex, white blood cell, and aneurysm rupture before surgery. Performance evaluation of the classification error demonstrated the following: K-nearest neighbor, 0.2903; logistic regression, 0.2290; ranger, 0.2518; and extremely gradient boosting model, 0.2632. A nomogram based on a logistic regression algorithm was established using the above six parameters. The AUC values of the nomogram were 0.828 (0.775, 0.881) and 0.796 (0.710, 0.882) in the development and validation groups, respectively. Conclusions Machine learning algorithms present a good performance evaluation of intraoperative blood transfusion. The nomogram established using a logistic regression algorithm showed a good discriminative ability to predict intraoperative blood transfusion during aneurysm surgery.

Funder

Natural Science Foundation of Hubei

Natural Science Foundation of Xiangyang, Hubei

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3