A novel EEG-based major depressive disorder detection framework with two-stage feature selection

Author:

Li Yujie,Shen Yingshan,Fan Xiaomao,Huang Xingxian,Yu Haibo,Zhao Gansen,Ma Wenjun

Abstract

Abstract Background Major depressive disorder (MDD) is a common mental illness, characterized by persistent depression, sadness, despair, etc., troubling people’s daily life and work seriously. Methods In this work, we present a novel automatic MDD detection framework based on EEG signals. First of all, we derive highly MDD-correlated features, calculating the ratio of extracted features from EEG signals at frequency bands between $$\beta$$ β and $$\alpha$$ α . Then, a two-stage feature selection method named PAR is presented with the sequential combination of Pearson correlation coefficient (PCC) and recursive feature elimination (RFE), where the advantages lie in minimizing the feature searching space. Finally, we employ widely used machine learning methods of support vector machine (SVM), logistic regression (LR), and linear regression (LNR) for MDD detection with the merit of feature interpretability. Results Experiment results show that our proposed MDD detection framework achieves competitive results. The accuracy and $$F_{1}$$ F 1 score are up to 0.9895 and 0.9846, respectively. Meanwhile, the regression determination coefficient $$R^2$$ R 2 for MDD severity assessment is up to 0.9479. Compared with existing MDD detection methods with the best accuracy of 0.9840 and $$F_1$$ F 1 score of 0.97, our proposed framework achieves the state-of-the-art MDD detection performance. Conclusions Development of this MDD detection framework can be potentially deployed into a medical system to aid physicians to screen out MDD patients.

Funder

Philosophy and Social Sciences of Guangdong Province during the 13th Five-Year Plan period

Humanities and Social Sciences Research Foundation of Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3