On building a diabetes centric knowledge base via mining the web
Author:
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Link
http://link.springer.com/content/pdf/10.1186/s12911-019-0771-6.pdf
Reference45 articles.
1. Cebul RD, Love TE, Jain AK, Hebert CJ. Electronic health records and quality of diabetes care. N Engl J Med. 2011; 365(9):825–33. https://doi.org/10.1056/nejmsa1102519 .
2. Yin S, Chen D, Le J. Deep neural network based on translation model for diabetes knowledge graph. In: 2017 Fifth International Conference on Advanced Cloud and Big Data (CBD). IEEE: 2017. p. 318–323. https://doi.org/10.1109/cbd.2017.62 .
3. Yang Z, Yang J, Liu W, Wu L, Xing L, Wang Y, Fan X, Cheng Y. T2d@ZJU: a knowledgebase integrating heterogeneous connections associated with type 2 diabetes mellitus. Database. 2013;2013. https://doi.org/10.1093/database/bat052 .
4. Gopinath K, Jayakumararaj R, Karthikeyan M. DAPD: A knowledgebase for diabetes associated proteins. IEEE/ACM Trans Comput Biol Bioinforma. 2015; 12(3):604–10. https://doi.org/10.1109/tcbb.2014.2359442 .
5. Rotmensch M, Halpern Y, Tlimat A, Horng S, Sontag D. Learning a health knowledge graph from electronic medical records. Sci Reports. 2017; 7(1). https://doi.org/10.1038/s41598-017-05778-z .
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Construction of a Linked Data Set of COVID-19 Knowledge Graphs: Development and Applications;JMIR Medical Informatics;2022-05-13
2. Information Extraction from the Text Data on Traditional Chinese Medicine: A Review on Tasks, Challenges, and Methods from 2010 to 2021;Evidence-Based Complementary and Alternative Medicine;2022-05-13
3. Construction of a Linked Data Set of COVID-19 Knowledge Graphs: Development and Applications (Preprint);2022-03-07
4. Artificial intelligence in diabetology;Diabetes mellitus;2021-07-14
5. Head and Tail Entity Fusion Model in Medical Knowledge Graph Construction: Case Study in Pituitary Adenoma (Preprint);JMIR Medical Informatics;2021-02-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3