Path-based knowledge reasoning with textual semantic information for medical knowledge graph completion

Author:

Lan Yinyu,He ShizhuORCID,Liu Kang,Zeng Xiangrong,Liu Shengping,Zhao Jun

Abstract

Abstract Background Knowledge graphs (KGs), especially medical knowledge graphs, are often significantly incomplete, so it necessitating a demand for medical knowledge graph completion (MedKGC). MedKGC can find new facts based on the existed knowledge in the KGs. The path-based knowledge reasoning algorithm is one of the most important approaches to this task. This type of method has received great attention in recent years because of its high performance and interpretability. In fact, traditional methods such as path ranking algorithm take the paths between an entity pair as atomic features. However, the medical KGs are very sparse, which makes it difficult to model effective semantic representation for extremely sparse path features. The sparsity in the medical KGs is mainly reflected in the long-tailed distribution of entities and paths. Previous methods merely consider the context structure in the paths of knowledge graph and ignore the textual semantics of the symbols in the path. Therefore, their performance cannot be further improved due to the two aspects of entity sparseness and path sparseness. Methods To address the above issues, this paper proposes two novel path-based reasoning methods to solve the sparsity issues of entity and path respectively, which adopts the textual semantic information of entities and paths for MedKGC. By using the pre-trained model BERT, combining the textual semantic representations of the entities and the relationships, we model the task of symbolic reasoning in the medical KG as a numerical computing issue in textual semantic representation. Results Experiments results on the publicly authoritative Chinese symptom knowledge graph demonstrated that the proposed method is significantly better than the state-of-the-art path-based knowledge graph reasoning methods, and the average performance is improved by 5.83% for all relations. Conclusions In this paper, we propose two new knowledge graph reasoning algorithms, which adopt textual semantic information of entities and paths and can effectively alleviate the sparsity problem of entities and paths in the MedKGC. As far as we know, it is the first method to use pre-trained language models and text path representations for medical knowledge reasoning. Our method can complete the impaired symptom knowledge graph in an interpretable way, and it outperforms the state-of-the-art path-based reasoning methods.

Funder

the Natural Key R&D Program of China

the National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference29 articles.

1. Bello-Orgaz G, Jung JJ, Camacho D. Social big data: recent achievements and new challenges. Inf Fusion. 2016;28:45–59.

2. Murdoch TB, Detsky AS. The inevitable application of big data to health care. Jama. 2013;309(13):1351–2.

3. Pujara J, Augustine E, Getoor L. Sparsity and noise: where knowledge graph embeddings fall short. In: Proceedings of the 2017 conference on empirical methods in natural language processing; 2017.

4. Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. In: Neural information processing systems (NIPS); 2013. pp. 1–9.

5. Nickel M, Tresp V, Kriegel H-P. A three-way model for collective learning on multi-relational data. In: Icml; 2011.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3