Identification of missing concepts in biomedical terminologies using sequence-based formal concept analysis

Author:

Zheng Fengbo,Abeysinghe Rashmie,Cui LicongORCID

Abstract

Abstract Background As biomedical knowledge is rapidly evolving, concept enrichment of biomedical terminologies is an active research area involving automatic identification of missing or new concepts. Previously, we prototyped a lexical-based formal concept analysis (FCA) approach in which concepts were derived by intersecting bags of words, to identify potentially missing concepts in the National Cancer Institute (NCI) Thesaurus. However, this prototype did not handle concept naming and positioning. In this paper, we introduce a sequenced-based FCA approach to identify potentially missing concepts, supporting concept naming and positioning. Methods We consider the concept name sequences as FCA attributes to construct the formal context. The concept-forming process is performed by computing the longest common substrings of concept name sequences. After new concepts are formalized, we further predict their potential positions in the original hierarchy by identifying their supertypes and subtypes from original concepts. Automated validation via external terminologies in the Unified Medical Language System (UMLS) and biomedical literature in PubMed is performed to evaluate the effectiveness of our approach. Results We applied our sequenced-based FCA approach to all the sub-hierarchies under Disease or Disorder in the NCI Thesaurus (19.08d version) and five sub-hierarchies under Clinical Finding and Procedure in the SNOMED CT (US Edition, March 2020 release). In total, 1397 potentially missing concepts were identified in the NCI Thesaurus and 7223 in the SNOMED CT. For NCI Thesaurus, 85 potentially missing concepts were found in external terminologies and 315 of the remaining 1312 appeared in biomedical literature. For SNOMED CT, 576 were found in external terminologies and 1159 out of the remaining 6647 were found in biomedical literature. Conclusion Our sequence-based FCA approach has shown the promise for identifying potentially missing concepts in biomedical terminologies.

Funder

National Institute of Neurological Disorders and Stroke

U.S. National Science Foundation

U.S. National Library of Medicine

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the Impact of Orthogonality in the Readability of the OBO Foundry Ontologies;Lecture Notes in Networks and Systems;2024

2. Knowledge Identification within the Decomposition of Homogeneous Classes of Objects;2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT);2023-10-19

3. Quality Assurance of SNOMED CT using Lexical Similarity and Sibling Relationships;2023 the 7th International Conference on Medical and Health Informatics (ICMHI);2023-05-12

4. Formal Concept Analysis Applications in Bioinformatics;ACM Computing Surveys;2022-12-23

5. Leveraging non-lattice subgraphs for suggestion of new concepts for SNOMED CT;2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2021-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3