Author:
Sun Minghui,Engelhard Matthew M.,Bedoya Armando D.,Goldstein Benjamin A.
Abstract
Abstract
Background
Electronic Health Records (EHR) are widely used to develop clinical prediction models (CPMs). However, one of the challenges is that there is often a degree of informative missing data. For example, laboratory measures are typically taken when a clinician is concerned that there is a need. When data are the so-called Not Missing at Random (NMAR), analytic strategies based on other missingness mechanisms are inappropriate. In this work, we seek to compare the impact of different strategies for handling missing data on CPMs performance.
Methods
We considered a predictive model for rapid inpatient deterioration as an exemplar implementation. This model incorporated twelve laboratory measures with varying levels of missingness. Five labs had missingness rate levels around 50%, and the other seven had missingness levels around 90%. We included them based on the belief that their missingness status can be highly informational for the prediction. In our study, we explicitly compared the various missing data strategies: mean imputation, normal-value imputation, conditional imputation, categorical encoding, and missingness embeddings. Some of these were also combined with the last observation carried forward (LOCF). We implemented logistic LASSO regression, multilayer perceptron (MLP), and long short-term memory (LSTM) models as the downstream classifiers. We compared the AUROC of testing data and used bootstrapping to construct 95% confidence intervals.
Results
We had 105,198 inpatient encounters, with 4.7% having experienced the deterioration outcome of interest. LSTM models generally outperformed other cross-sectional models, where embedding approaches and categorical encoding yielded the best results. For the cross-sectional models, normal-value imputation with LOCF generated the best results.
Conclusion
Strategies that accounted for the possibility of NMAR missing data yielded better model performance than those did not. The embedding method had an advantage as it did not require prior clinical knowledge. Using LOCF could enhance the performance of cross-sectional models but have countereffects in LSTM models.
Funder
National Institute of Diabetes and Digestive and Kidney Diseases
National Institute of Mental Health
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Phelan M, Bhavsar NA, Goldstein BA. Illustrating informed presence bias in electronic health records data: how patient interactions with a health system can impact inference. EGEMs. 2017;5.
2. Weiskopf NG, Rusanov A, Weng C. Sick patients have more data: The non-random completeness of electronic health records. In: AMIA annual symposium proceedings. American Medical Informatics Association; 2013. p. 1472.
3. Tsiampalis T, Panagiotakos D. Methodological issues of the electronic health records’ use in the context of epidemiological investigations, in light of missing data: a review of the recent literature. BMC Med Res Methodol. 2023;23:180.
4. Sisk R, Lin L, Sperrin M, Barrett JK, Tom B, Diaz-Ordaz K, et al. Informative presence and observation in routine health data: a review of methodology for clinical risk prediction. J Am Med Inform Assoc. 2021;28:155–66.
5. Getzen E, Ungar L, Mowery D, Jiang X, Long Q. Mining for equitable health: assessing the impact of missing data in electronic health records. J Biomed Inform. 2023;139:104269.