Author:
Kumar Manoj,Noronha Santosh,Rangaraj Narayan,Moiyadi Aliasgar,Shetty Prakash,Singh Vikas Kumar
Abstract
Abstract
Background
Gliomas are among the most typical brain tumors tackled by neurosurgeons. During navigation for surgery of glioma brain tumors, preoperatively acquired static images may not be accurate due to shifts. Surgeons use intraoperative imaging technologies (2-Dimensional and navigated 3-Dimensional ultrasound) to assess and guide resections. This paper aims to precisely capture the importance of preoperative parameters to decide which type of ultrasound to be used for a particular surgery.
Methods
This paper proposes two bagging algorithms considering base classifier logistic regression and random forest. These algorithms are trained on different subsets of the original data set. The goodness of fit of Logistic regression-based bagging algorithms is established using hypothesis testing. Furthermore, the performance measures for random-forest-based bagging algorithms used are AUC under ROC and AUC under the precision-recall curve. We also present a composite model without compromising the explainability of the models.
Results
These models were trained on the data of 350 patients who have undergone brain surgery from 2015 to 2020. The hypothesis test shows that a single parameter is sufficient instead of all three dimensions related to the tumor ($$p < 0.05$$
p
<
0.05
). We observed that the choice of intraoperative ultrasound depends on the surgeon making a choice, and years of experience of the surgeon could be a surrogate for this dependence.
Conclusion
This study suggests that neurosurgeons may not need to focus on a large set of preoperative parameters in order to decide on ultrasound. Moreover, it personalizes the use of a particular ultrasound option in surgery. This approach could potentially lead to better resource management and help healthcare institutions improve their decisions to make the surgery more effective.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献