Choice of intraoperative ultrasound adjuncts for brain tumor surgery

Author:

Kumar Manoj,Noronha Santosh,Rangaraj Narayan,Moiyadi Aliasgar,Shetty Prakash,Singh Vikas Kumar

Abstract

Abstract Background Gliomas are among the most typical brain tumors tackled by neurosurgeons. During navigation for surgery of glioma brain tumors, preoperatively acquired static images may not be accurate due to shifts. Surgeons use intraoperative imaging technologies (2-Dimensional and navigated 3-Dimensional ultrasound) to assess and guide resections. This paper aims to precisely capture the importance of preoperative parameters to decide which type of ultrasound to be used for a particular surgery. Methods This paper proposes two bagging algorithms considering base classifier logistic regression and random forest. These algorithms are trained on different subsets of the original data set. The goodness of fit of Logistic regression-based bagging algorithms is established using hypothesis testing. Furthermore, the performance measures for random-forest-based bagging algorithms used are AUC under ROC and AUC under the precision-recall curve. We also present a composite model without compromising the explainability of the models. Results These models were trained on the data of 350 patients who have undergone brain surgery from 2015 to 2020. The hypothesis test shows that a single parameter is sufficient instead of all three dimensions related to the tumor ($$p < 0.05$$ p < 0.05 ). We observed that the choice of intraoperative ultrasound depends on the surgeon making a choice, and years of experience of the surgeon could be a surrogate for this dependence. Conclusion This study suggests that neurosurgeons may not need to focus on a large set of preoperative parameters in order to decide on ultrasound. Moreover, it personalizes the use of a particular ultrasound option in surgery. This approach could potentially lead to better resource management and help healthcare institutions improve their decisions to make the surgery more effective.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3