Dynamic Bayesian network for predicting physiological changes, organ dysfunctions and mortality risk in critical trauma patients

Author:

Chen Qi,Tang Bihan,Song Jiaqi,Jiang Ying,Zhao Xinxin,Ruan Yiming,Zhao Fangjie,Wu Guosheng,Chen Tao,He Jia

Abstract

Abstract Background Critical trauma patients are particularly prone to increased mortality risk; hence, an accurate prediction of their conditions enables early identification of patients' mortality status. Thus, we aimed to develop and validate a real-time prediction model for physiological changes, organ dysfunctions and mortality risk in critical trauma patients. Methods We used Dynamic Bayesian Networks (DBNs) to model complicated relationships of physiological variables across time slices, accessing data of trauma patients from the Medical Information Mart for Intensive Care database (MIMIC-III) (n = 2915) and validated with patients' data from ICU admissions at the Changhai Hospital (ICU-CH) (n = 1909). The DBN model's evaluation included the predictive ability of physiological changes, organ dysfunctions and mortality risk. Results Our DBN model included two static variables (age and sex) and 18 dynamic physiological variables. The differences in ratios between the real values and the 24- and 48-h predicted values of most physiological variables were within 5% in the two datasets. The accuracy of our DBN model for predicting renal, hepatic, cardiovascular and hematologic dysfunctions was more than 0.8.The calculated area under the curve (AUC) from receiver operating characteristic curves and 95% confidence interval for predicting the 24- and 48-h mortality risk were 0.977 (0.967–0.988) and 0.958 (0.945–0.971) in the MIMIC-III and 0.967 (0.947–0.987) and 0.946 (0.925–0.967) in ICU-CH. Conclusions A DBN is a promising method for predicting medical temporal data such as trauma patients' mortality risk, demonstrated by high AUC scores and validation by a real-life ICU scenario; thus, our DBN prediction model can be used as a real-time tool to predict physiological changes, organ dysfunctions and mortality risk during ICU admissions.

Funder

Special Clinical Research in Health Industry in Shanghai

Shanghai Sail Program

Military Medical Science and Technology Youth Cultivation Project

National Natural Science Foundation

Sailing Talents Project of the Naval Military Medical University

Key Technologies Research and Development Program

Military Key Discipline Construction Project

Shanghai Key Disciplines of Public Health

Research and Development of Medical Protection Technology

Shanghai Industrial collaborative innovation project

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3