Author:
Chen Qi,Tang Bihan,Song Jiaqi,Jiang Ying,Zhao Xinxin,Ruan Yiming,Zhao Fangjie,Wu Guosheng,Chen Tao,He Jia
Abstract
Abstract
Background
Critical trauma patients are particularly prone to increased mortality risk; hence, an accurate prediction of their conditions enables early identification of patients' mortality status. Thus, we aimed to develop and validate a real-time prediction model for physiological changes, organ dysfunctions and mortality risk in critical trauma patients.
Methods
We used Dynamic Bayesian Networks (DBNs) to model complicated relationships of physiological variables across time slices, accessing data of trauma patients from the Medical Information Mart for Intensive Care database (MIMIC-III) (n = 2915) and validated with patients' data from ICU admissions at the Changhai Hospital (ICU-CH) (n = 1909). The DBN model's evaluation included the predictive ability of physiological changes, organ dysfunctions and mortality risk.
Results
Our DBN model included two static variables (age and sex) and 18 dynamic physiological variables. The differences in ratios between the real values and the 24- and 48-h predicted values of most physiological variables were within 5% in the two datasets. The accuracy of our DBN model for predicting renal, hepatic, cardiovascular and hematologic dysfunctions was more than 0.8.The calculated area under the curve (AUC) from receiver operating characteristic curves and 95% confidence interval for predicting the 24- and 48-h mortality risk were 0.977 (0.967–0.988) and 0.958 (0.945–0.971) in the MIMIC-III and 0.967 (0.947–0.987) and 0.946 (0.925–0.967) in ICU-CH.
Conclusions
A DBN is a promising method for predicting medical temporal data such as trauma patients' mortality risk, demonstrated by high AUC scores and validation by a real-life ICU scenario; thus, our DBN prediction model can be used as a real-time tool to predict physiological changes, organ dysfunctions and mortality risk during ICU admissions.
Funder
Special Clinical Research in Health Industry in Shanghai
Shanghai Sail Program
Military Medical Science and Technology Youth Cultivation Project
National Natural Science Foundation
Sailing Talents Project of the Naval Military Medical University
Key Technologies Research and Development Program
Military Key Discipline Construction Project
Shanghai Key Disciplines of Public Health
Research and Development of Medical Protection Technology
Shanghai Industrial collaborative innovation project
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献