Utilizing deep learning and graph mining to identify drug use on Twitter data

Author:

Tassone Joseph,Yan Peizhi,Simpson Mackenzie,Mendhe Chetan,Mago VijayORCID,Choudhury Salimur

Abstract

Abstract Background The collection and examination of social media has become a useful mechanism for studying the mental activity and behavior tendencies of users. Through the analysis of a collected set of Twitter data, a model will be developed for predicting positively referenced, drug-related tweets. From this, trends and correlations can be determined. Methods Social media data (tweets and attributes) were collected and processed using topic pertaining keywords, such as drug slang and use-conditions (methods of drug consumption). Potential candidates were preprocessed resulting in a dataset of 3,696,150 rows. The predictive classification power of multiple methods was compared including SVM, XGBoost, BERT and CNN-based classifiers. For the latter, a deep learning approach was implemented to screen and analyze the semantic meaning of the tweets. Results To test the predictive capability of the model, SVM and XGBoost were first employed. The results calculated from the models respectively displayed an accuracy of 59.33% and 54.90%, with AUC’s of 0.87 and 0.71. The values show a low predictive capability with little discrimination. Conversely, the CNN-based classifiers presented a significant improvement, between the two models tested. The first was trained with 2661 manually labeled samples, while the other included synthetically generated tweets culminating in 12,142 samples. The accuracy scores were 76.35% and 82.31%, with an AUC of 0.90 and 0.91. Using association rule mining in conjunction with the CNN-based classifier showed a high likelihood for keywords such as “smoke”, “cocaine”, and “marijuana” triggering a drug-positive classification. Conclusion Predictive analysis with a CNN is promising, whereas attribute-based models presented little predictive capability and were not suitable for analyzing text of data. This research found that the commonly mentioned drugs had a level of correspondence with frequently used illicit substances, proving the practical usefulness of this system. Lastly, the synthetically generated set provided increased accuracy scores and improves the predictive capability.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3