Stochastic Petri net model describing the relationship between reported maternal and congenital syphilis cases in Brazil

Author:

Valentim Ricardo A. M.,Caldeira-Silva Gleyson J. P.,da Silva Rodrigo D.,Albuquerque Gabriela A.,de Andrade Ion G. M.,Sales-Moioli Ana Isabela L.,Pinto Talita K. de B.,Miranda Angélica E.,Galvão-Lima Leonardo J.,Cruz Agnaldo S.,Barros Daniele M. S.ORCID,Rodrigues Anna Giselle C. D. R.

Abstract

Abstract Introduction Syphilis is a sexually transmitted disease (STD) caused by Treponema pallidum subspecies pallidum. In 2016, it was declared an epidemic in Brazil due to its high morbidity and mortality rates, mainly in cases of maternal syphilis (MS) and congenital syphilis (CS) with unfavorable outcomes. This paper aimed to mathematically describe the relationship between MS and CS cases reported in Brazil over the interval from 2010 to 2020, considering the likelihood of diagnosis and effective and timely maternal treatment during prenatal care, thus supporting the decision-making and coordination of syphilis response efforts. Methods The model used in this paper was based on stochastic Petri net (SPN) theory. Three different regressions, including linear, polynomial, and logistic regression, were used to obtain the weights of an SPN model. To validate the model, we ran 100 independent simulations for each probability of an untreated MS case leading to CS case (PUMLC) and performed a statistical t-test to reinforce the results reported herein. Results According to our analysis, the model for predicting congenital syphilis cases consistently achieved an average accuracy of 93% or more for all tested probabilities of an untreated MS case leading to CS case. Conclusions The SPN approach proved to be suitable for explaining the Notifiable Diseases Information System (SINAN) dataset using the range of 75–95% for the probability of an untreated MS case leading to a CS case (PUMLC). In addition, the model’s predictive power can help plan actions to fight against the disease.

Funder

Fundação Norte-Rio-Grandense de Pesquisa e Cultura, Universidade Federal do Rio Grande do Norte

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3