Developing a standardised approach to the aggregation of inpatient episodes into person-based spells in all specialties and psychiatric specialties

Author:

Rees SarahORCID,Akbari Ashley,Collins Huw,Lee Sze Chim,Marchant Amanda,Rees Arfon,Thayer Daniel,Wang Ting,Wood Sophie,John Ann

Abstract

Abstract Background Electronic health record (EHR) data are available for research in all UK nations and cross-nation comparative studies are becoming more common. All UK inpatient EHRs are based around episodes, but episode-based analysis may not sufficiently capture the patient journey. There is no UK-wide method for aggregating episodes into standardised person-based spells. This study identifies two data quality issues affecting the creation of person-based spells, and tests four methods to create these spells, for implementation across all UK nations. Methods Welsh inpatient EHRs from 2013 to 2017 were analysed. Phase one described two data quality issues; transfers of care and episode sequencing. Phase two compared four methods for creating person spells. Measures were mean length of stay (LOS, expressed in days) and number of episodes per person spell for each method. Results 3.5% of total admissions were transfers-in and 3.1% of total discharges were transfers-out. 68.7% of total transfers-in and 48.7% of psychiatric transfers-in had an identifiable preceding transfer-out, and 78.2% of total transfers-out and 59.0% of psychiatric transfers-out had an identifiable subsequent transfer-in. 0.2% of total episodes and 4.0% of psychiatric episodes overlapped with at least one other episode of any specialty. Method one (no evidence of transfer required; overlapping episodes grouped together) resulted in the longest mean LOS (4.0 days for all specialties; 48.5 days for psychiatric specialties) and the fewest single episode person spells (82.4% of all specialties; 69.7% for psychiatric specialties). Method three (evidence of transfer required; overlapping episodes separated) resulted in the shortest mean LOS (3.7 days for all specialties; 45.8 days for psychiatric specialties) and the most single episode person spells; (86.9% for all specialties; 86.3% for psychiatric specialties). Conclusions Transfers-in appear better recorded than transfers-out. Transfer coding is incomplete, particularly for psychiatric specialties. The proportion of episodes that overlap is small but psychiatric episodes are disproportionately affected. The most successful method for grouping episodes into person spells aggregated overlapping episodes and required no evidence of transfer from admission source/method or discharge destination codes. The least successful method treated overlapping episodes as distinct and required transfer coding. The impact of all four methods was greater for psychiatric specialties.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference39 articles.

1. McIntosh A, Stewart R, John A, Smith D, Davis K, Sudlow C. Data science for mental health: a UK perspective on a global challenge. Lancet. 2016;3(10):993–8.

2. NHS Digital: Hospital Episode Statistics Data Dictionary. 2018. [Online]. Available: https://www.datadictionary.nhs.uk/items_index_a_child.asp?shownav=1. [Accessed 19 12 2018].

3. Information Services Division (ISD) Scotland. ISD Scotland Data Dictionary. 2018. [Online]. Available: https://www.ndc.scot.nhs.uk/Dictionary-A-Z/index.asp. [Accessed 19 12 2018].

4. NHS Wales Informatics Service (NWIS). NHS Wales Data Dictionary: Admitted Patient Care (APC). 2017. [Online]. Available: http://www.datadictionary.wales.nhs.uk/#!WordDocuments/datasetstructure.htm. [Accessed 19 12 2018].

5. Health and Social Care Business Services Organisation. HSC Business Services Organisation – Metadata. 2018. [Online]. Available: http://www.hscbusiness.hscni.net/pdf/Admissions_and_Discharges_Metadata.zip. [Accessed 19 12 2018].

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3