Improved nonparametric survival prediction using CoxPH, Random Survival Forest & DeepHit Neural Network

Author:

Asghar Naseem,Khalil Umair,Ahmad Basheer,Alshanbari Huda M.,Hamraz Muhammad,Ahmad Bakhtiyar,Khan Dost Muhammad

Abstract

Abstract In recent times, time-to-event data such as time to failure or death is routinely collected alongside high-throughput covariates. These high-dimensional bioinformatics data often challenge classical survival models, which are either infeasible to fit or produce low prediction accuracy due to overfitting. To address this issue, the focus has shifted towards introducing a novel approaches for feature selection and survival prediction. In this article, we propose a new hybrid feature selection approach that handles high-dimensional bioinformatics datasets for improved survival prediction. This study explores the efficacy of four distinct variable selection techniques: LASSO, RSF-vs, SCAD, and CoxBoost, in the context of non-parametric biomedical survival prediction. Leveraging these methods, we conducted comprehensive variable selection processes. Subsequently, survival analysis models—specifically CoxPH, RSF, and DeepHit NN—were employed to construct predictive models based on the selected variables. Furthermore, we introduce a novel approach wherein only variables consistently selected by a majority of the aforementioned feature selection techniques are considered. This innovative strategy, referred to as the proposed method, aims to enhance the reliability and robustness of variable selection, subsequently improving the predictive performance of the survival analysis models. To evaluate the effectiveness of the proposed method, we compare the performance of the proposed approach with the existing LASSO, RSF-vs, SCAD, and CoxBoost techniques using various performance metrics including integrated brier score (IBS), concordance index (C-Index) and integrated absolute error (IAE) for numerous high-dimensional survival datasets. The real data applications reveal that the proposed method outperforms the competing methods in terms of survival prediction accuracy.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3