Learning rich features with hybrid loss for brain tumor segmentation

Author:

Huang Daobin,Wang Minghui,Zhang Ling,Li Haichun,Ye Minquan,Li AoORCID

Abstract

Abstract Background Accurately segment the tumor region of MRI images is important for brain tumor diagnosis and radiotherapy planning. At present, manual segmentation is wildly adopted in clinical and there is a strong need for an automatic and objective system to alleviate the workload of radiologists. Methods We propose a parallel multi-scale feature fusing architecture to generate rich feature representation for accurate brain tumor segmentation. It comprises two parts: (1) Feature Extraction Network (FEN) for brain tumor feature extraction at different levels and (2) Multi-scale Feature Fusing Network (MSFFN) for merge all different scale features in a parallel manner. In addition, we use two hybrid loss functions to optimize the proposed network for the class imbalance issue. Results We validate our method on BRATS 2015, with 0.86, 0.73 and 0.61 in Dice for the three tumor regions (complete, core and enhancing), and the model parameter size is only 6.3 MB. Without any post-processing operations, our method still outperforms published state-of-the-arts methods on the segmentation results of complete tumor regions and obtains competitive performance in another two regions. Conclusions The proposed parallel structure can effectively fuse multi-level features to generate rich feature representation for high-resolution results. Moreover, the hybrid loss functions can alleviate the class imbalance issue and guide the training process. The proposed method can be used in other medical segmentation tasks.

Funder

the National Natural Science Foundation of China

the Anhui Provincial Natural Science Foundation of China

the open project of Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3