Abstract
Abstract
Background
Pacific cod (Gadus macrocephalus) is an ecologically important species that supports a valuable commercial fishery throughout Alaska waters. Although its life history includes seasonal movement for spawning and feeding, little is known about its movement ecology. Here, we present results from the first study to use pop-up satellite archival tags (PSATs) to track the within-year movements of Pacific cod to understand their potential seasonal movement patterns within the Aleutian Islands. This study was part of a cooperative research project; tagging was conducted onboard commercial vessels during the winter fishing season while Pacific cod were aggregated to spawn in the central Aleutian Islands.
Results
Of the 36 PSATs deployed, we were able to obtain movement data from 13 Pacific cod that were at liberty between 60 and 360 days. We determined that three tagged Pacific cod were predated on by marine mammals and three were recaptured by the commercial fishery. Geolocation models were produced for four migrating individuals. Eight Pacific cod moved to a productive foraging ground near Seguam Island located 64 to 344 km from their release site and presumed spawning ground within a few weeks of their release. These movements indicate that some Pacific cod in the Aleutian Islands undergo seasonal migration. Three Pacific cod remained near their release locations (within 50 km) for more than 75 days suggesting the existence of partial migration in the population. Two Pacific cod undertook larger movements (378 and 394 km) during which they swam over deep passes and crossed several management boundaries highlighting the potential connectedness of Pacific cod throughout the Aleutian Islands.
Conclusions
This study provided important initial insights into the seasonal movement patterns of Pacific cod in the Aleutian Islands. Most tracked Pacific cod (77%) undertook migrations in the middle of March (64–394 km) from their winter spawning areas to summer foraging areas, but a few individuals remained in their capture location suggesting a partial migration strategy. Their ability to cross deep passes that were previously seen as potential barriers to movement has expanded our understanding of population connectivity.
Funder
North Pacific Research Board
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献