Evaluating habitat-specific interference in automated radio telemetry systems: implications for animal movement studies

Author:

Tran Vinh T.,Vitz Andrew C.,Bakermans Marja H.

Abstract

AbstractAutomated radio telemetry systems have become a popular and invaluable tool in tracking the activity and movement of wild animals. However, many environmental conditions can hinder accuracy when tracking with this technology. For instance, study sites may contain multiple habitat types, each habitat uniquely affecting the signal strength received from tagged species. To investigate the influence of a structurally diverse study site on an automated radio telemetry system, we conducted this project at a restored and managed pine barren habitat that consisted of a mix of mature pitch pine, treated pitch pine, scrub oak, and hardwood forests. This site, Montague Plains Wildlife Management Area, Montague, Massachusetts, is also a known breeding ground for Eastern whip-poor-will (Antrostomus vociferus). To measure the relationship of radio signal strength with distance across each habitat, we used radio telemetry equipment manufactured by Cellular Tracking Technologies. We produced negative exponential decay functions measuring radio signal strength over distance and tested for differences among habitat types on radio signal strength (RSS). We found that decay function parameters significantly differed by habitat type, prompting us to investigate if accounting for these differences improved location estimate accuracy. To test this, we estimated known locations using trilateration methods with and without habitat calibration. Comparing these tests indicates that habitat-specific adjustments significantly improved location accuracy. Lastly, we visualized estimated RSS-based locations of 1 week of whip-poor-will data and compared them to GPS data generated from the same individual. Previous studies have accounted for types of environmental interference (like elevation) in the field but have avoided incorporating habitat-specific factors by working with node networks covering a relatively small area, but in this study, we examined the potential to scale up for larger areas and in more complex habitats.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3