Nesting attempts and success of Arctic-breeding geese can be derived with high precision from accelerometry and GPS-tracking

Author:

Schreven Kees H. T.ORCID,Stolz Christian,Madsen Jesper,Nolet Bart A.

Abstract

AbstractSensors, such as accelerometers, in tracking devices allow for detailed bio-logging to understand animal behaviour, even in remote places where direct observation is difficult. To study breeding in birds remotely, one needs to understand how to recognise a breeding event from tracking data, and ideally validate this by direct observation. We tagged 49 adult female pink-footed geese (Anser brachyrhynchus) with transmitter neckbands in Finland in spring of 2018 and 2019, and in Svalbard in summer 2018, and validated inferences from tracking by field observations of nesting sites and family status in 2018–2020 (54 spring–summer tracks). We estimated nesting locations by taking the median coordinates of GPS-fixes at which the goose was motionless (overall dynamic body acceleration, ODBA  <  1) on days with a daily median ODBA  <  1, which approached the real nesting locations closely (within 1.6–3.7 m, n  =  6). The start of nesting was defined as the first day on which the goose spent  >  75% of time within 50 m of the nest, because nest site attendances steeply increased within one day to above this threshold. Nesting duration (number of consecutive days with  >  75% nest site attendance) ranged between 3 and 44 days (n  =  28), but was 30–34 days in confirmed successful nests (n = 9). The prolonged nesting of 39–44 days (n = 3) suggested incubation on unhatchable egg(s). Nest losses before hatching time occurred mostly in day 3–10 and 23–29 of nesting, periods with an increased frequency of nest site recesses. As alternative method, allowing for non-simultaneous GPS and accelerometer data, we show that nesting days were classified with 98.6% success by two general characteristics of breeding: low body motion (daily median ODBA) and low geographic mobility (daily SD of latitude). Median coordinates on nesting days approached real nest sites closely (within 0.8–3.6 m, n  =  6). When considering only geographic mobility (allowing for GPS data only) nesting locations were similarly accurate, but some short nesting attempts were undetected and non-breeding tracks misclassified. We show that nesting attempts, as short as 3 days, and nesting success can be detected remotely with good precision using GPS-tracking and accelerometry. Our method may be generalised to other (precocial) bird species with similar incubation behaviour.

Funder

Dutch Research Council NWO - Netherlands Polar Programme NPP

Svalbard Environmental Protection Fund

Koninklijke Nederlandse Akademie van Wetenschappen

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3