Identification of carnivore kill sites is improved by verified accelerometer data

Author:

Petroelje Tyler R.ORCID,Belant Jerrold L.,Beyer Dean E.,Svoboda Nathan J.

Abstract

Abstract Background Quantifying kill rates is central to understanding predation ecology. However, estimating kill rates and prey composition in carnivore diets is challenging due to their low densities and cryptic behaviors limiting direct observations, especially when the prey is small (i.e., < 5 kg). Global positioning system (GPS) collars and use of collar-mounted activity sensors linked with GPS data can provide insights into animal movements, behavior, and activity. Methods We verified activity thresholds for American black bears (Ursus americanus), a bobcat (Lynx rufus), and wolves (Canis spp.) with GPS collars containing on-board accelerometers by visual observations of captive individuals’ behavior. We applied these activity threshold values to GPS location and accelerometer data from free-ranging carnivores at locations identified by a GPS cluster algorithm which we visited and described as kill sites or non-kill sites. We then assessed use of GPS, landscape, and activity data in a predictive model for improving detection of kill sites for free-ranging black bears, bobcats, coyotes (C. latrans), and wolves using logistic regression during May–August 2013–2015. Results Accelerometer values differed between active and inactive states for black bears (P < 0.01), the bobcat (P < 0.01), and wolves (P < 0.01). Top-performing models of kill site identification for each carnivore species included activity data which improved correct assignment of kill sites by 5–38% above models that did not include activity. Though inclusion of activity data improved model performance, predictive power was less than 45% for all species. Conclusions Collar-mounted accelerometers can improve identification of predation sites for some carnivores as compared to use of GPS and landscape informed covariates alone and increase our understanding of predator–prey relations.

Funder

Safari Club International Foundation

Michigan Department of Natural Resources

Federal Aid in Wildlife Restoration Act

Mississippi State University Forest and Wildlife Research Center

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3