Energy landscapes of Kodiak brown bears: a comparison of accelerometer and global positioning system-derived estimates

Author:

Finnegan S. P.,Pagano A. M.,Svoboda N. J.,Schooler S. L.,Belant J. L.

Abstract

AbstractWithin optimal foraging theory animals should maximize their net energy gain while minimizing energetic costs. Energetic expenditure in wild animals is therefore key to measure proxies of fitness. Accelerometers are an effective tool to study animal movement-based energetics, but retrieval of the device is usually required and often difficult. Accelerometers measure movement across three axes (x, y, and z) and can be calibrated to measures of oxygen consumption from captive animals, providing estimates of overall energy expenditure. Measuring energetic expenditures using a global positioning system (GPS) approach could provide an alternative method to study energetic ecology. This technique uses locomotor speeds across a range of slopes from successive GPS locations, which can be linked to the energy expenditure from captive individuals. We compared accelerometer and GPS methods of energetic expenditures in free-roaming brown bears (Ursus arctos) on the Kodiak Archipelago, Alaska, USA. We then applied the GPS method to examine how multiple factors influenced brown bear movement-based daily energetic expenditures (MDEE). We found that while the two energetic measurements differed (Wilcoxon signed rank test: V = 2116, p < 0.001), they were positively correlated (r = 0.82, p < 0.001). The GPS method on average provided 1.6 times greater energy estimates than the accelerometer method. Brown bears had lower MDEE during periods of high food abundance, supporting optimal foraging theory. Reproductive status and age did not influence MDEE, however movement rates had a positive linear relationship. Energetic ecology is important for understanding drivers of animal movements. Data from GPS collars can provide useful information on energetic expenditures, but should be validated for the specific taxa, ecosystem, and GPS sampling rate used. Additionally, while movement-based estimates of energy expenditure can elucidate the mechanisms driving habitat use decisions, they may not fully reflect an animal’s overall energy demands. Brown bear movement-based energetic expenditure was influenced by food abundance and movement rates, which highlighted the importance of access to prime foraging sites to enhance energetic efficiency.

Funder

Federal Aid in Wildlife Restoration Act under Pittman-Robertson

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3