Trade-offs in telemetry tag programming for deep-diving cetaceans: data longevity, resolution, and continuity

Author:

Cioffi William R.ORCID,Quick Nicola J.ORCID,Swaim Zachary T.ORCID,Foley Heather J.ORCID,Waples Danielle M.,Webster Daniel L.,Baird Robin W.ORCID,Southall Brandon L.ORCID,Nowacek Douglas P.ORCID,Read Andrew J.ORCID

Abstract

Abstract Background Animal-borne telemetry instruments (tags) have greatly advanced our understanding of species that are challenging to observe. Recently, non-recoverable instruments attached to cetaceans have increased in use, but these devices have limitations in data transmission bandwidth. We analyze trade-offs in the longevity, resolution, and continuity of data records from non-recoverable satellite-linked tags on deep-diving Ziphius cavirostris in the context of a behavioral response study of acute noise exposure. We present one data collection programming scheme that balances resolution and continuity against longevity to address specific questions about the behavioral responses of animals to noise exposure in experimental contexts. We compare outputs between two programming regimes on a commercially available satellite-linked tag: (1) dive behavior summary defined by conductivity thresholds and (2) depth time-series at various temporal resolutions. Results We found that time-series data vary from the more precisely defined dives from a dive summary record data stream by an acceptable error range for our application. We determined a 5-min time-series data stream collected for 14 days balanced resolution with longevity, achieving complete or nearly complete diving records in 6 out of 8 deployments. We increased our data message reception rate several fold by employing a boat based data capture system. Finally, a tag deployed in a group concurrently with a high-resolution depth recorder showed high depth concordance. Conclusions We present the conceptual framework and iterative process for matching telemetry tag programming to research questions that we used and which should be applicable to a wide range of studies. Although designing new hardware for our specific questions was not feasible at the time, we were able to optimize the sampling regime of a commercially available instrument to meet the needs of our research questions and proposed analyses. Nevertheless, for other study species or designs, the complicated intersection between animal behavior and bandwidth of telemetry systems can often create a severe mismatch among research questions, data collection, and analysis tools. More flexible programming and purpose-built instruments will increase the efficacy of these studies and increase the scientific yield relative to the inherently higher risk of invasive studies.

Funder

US Fleet Forces Command Marine Species Monitoring Program through the Naval Facilities Engineering Command Atlantic under contracts issued to HDR, inc.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3