Scheimpflug lidar range profiling of bee activity patterns and spatial distributions

Author:

Rydhmer KlasORCID,Prangsma Jord,Brydegaard Mikkel,Smith Henrik G.,Kirkeby Carsten,Kappel Schmidt Inger,Boelt Birte

Abstract

Abstract Background Recent declines of honeybees and simplifications of wild bee communities, at least partly attributed to changes of agricultural landscapes, have worried both the public and the scientific community. To understand how wild and managed bees respond to landscape structure it is essential to investigate their spatial use of foraging habitats. However, such studies are challenging since the foraging behaviour of bees differs between species and can be highly dynamic. Consequently, the necessary data collection is laborious using conventional methods and there is a need for novel methods that allow for automated and continuous monitoring of bees. In this work, we deployed an entomological lidar in a homogenous white clover seed crop and profiled the activity of honeybees and other ambient insects in relation to a cluster of beehives. Results In total, 566,609 insect observations were recorded by the lidar. The total measured range distribution was separated into three groups, out of which two were centered around the beehives and considered to be honeybees, while the remaining group was considered to be wild insects. The validity of this model in separating honeybees from wild insects was verified by the average wing modulation frequency spectra in the dominating range interval for each group. The temporal variation in measured activity of the assumed honeybee observations was well correlated with honeybee activity indirectly estimated using hive scales as well as directly observed using transect counts. Additional insight regarding the three-dimensional distribution of bees close to the hive was provided by alternating the beam between two heights, revealing a “funnel like” distribution around the beehives, widening with height. Conclusions We demonstrate how lidar can record very high numbers of insects during a short time period. In this work, a spatial model, derived from the detection limit of the lidar and two Gaussian distributions of honeybees centered around their hives was sufficient to reproduce the observations of honeybees and background insects. This methodology can in the future provide valuable new information on how external factors influence pollination services and foraging habitat selection and range of both managed bees and wild pollinators.

Funder

Idaagardsfonden

Innovationsfonden

Norsk Elektro Optikk AS

15 Juni

Aage V. Jensen Nature Foundations

Svenska Forskningsrådet Formas

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3