An evaluation of acoustic telemetry as a method to study the movements of Asteroidea (Asterias rubens)

Author:

Nadalini Jean-Bruno,Lees Kirsty J.,Lavoie Marie-France,MacGregor Kathleen A.,McKindsey Christopher W.

Abstract

Abstract Background Acoustic telemetry is an important tool to study the movement of aquatic animals. However, studies have focussed on particular groups of easily tagged species. The development of effective tagging methods for ecologically important benthic species, such as sea stars, remains a challenge due to autotomy and their remarkable capacity to expel any foreign material. We tested three methods to surgically attach acoustic transmitters to the common sea star Asterias rubens; two methods attached the tag to the aboral side of the central body and the third attached the transmitter to the aboral side of an arm. Laboratory experiments evaluated each method in terms of survivability, tag retention, associated injuries, and changes in feeding behaviour and physical condition. Results Laboratory results were highly variable; however, all tagging methods caused significant injury to the epidermis and deeper tissue around the attachment site over periods greater than 4 weeks. Attaching a tag by horizontally piercing the central body (method HPC) had minimal effects in the short-term (2–3 weeks) and this method was used for a pilot tagging study in the field, where 10 sea stars were tagged and placed within an existing acoustic telemetry array. Although, the interpretation of field data was challenging due to the characteristic slow movement of sea stars, movements of a similar magnitude to previous studies were identified during the 2–4 weeks after sea stars were tagged and released. However, this apparent period of tagging success was followed by a reduction in movement that, when viewed in conjunction with laboratory results, potentially indicated a deterioration in the sea stars’ physical condition. Conclusions While acoustic telemetry continues to provide novel insights into the ecology of a wide variety of marine species, species-specific effects of tagging should be evaluated before starting field studies. If the autonomous study of benthic movement is to expand beyond hard-bodied macroinvertebrates current methodological and analytical challenges must be addressed.

Funder

Fisheries and Oceans Canada

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3