Abstract
Abstract
Background
The vaginal implant transmitter is an effective tool in the study of neonatal survival rates for cervid species. The latest iterations of the vaginal implant transmitter use Global Positioning Systems and ultra-high frequency telemetry technology to create a self-monitoring system in which researchers receive near instantaneous notifications of parturition events via remote transmission. We deployed ultra-high-frequency radio-linked vaginal implant transmitters on 44 adult female white-tailed deer (Odocoileus virginianus) and assessed their performance and possible benefits to field research.
Results
In 2016, 60% of the females expelled transmitters at the birth sites. Failure to locate a birth site was a result of technological failings (20%) and premature expulsions (20%). Following manufacturer updates in 2017, we observed an apparent reduction in technology malfunctions (8%) but similar rates of premature expulsions (33%), which resulted in 58% of radio-linked transmitters expelled at birth sites. We located similar numbers of neonates per device across both years. The likelihood that researchers would locate > 1 neonate at or near the birth site was greater for radio-linked transmitters than has been reported in studies using traditional vaginal implant transmitters.
Conclusions
Radio-linked transmitters allow researchers to increase sample size, expand spatial distribution of study animals, and reduce personnel requirements.
Funder
U.S. Fish and Wildlife Service
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing
Reference47 articles.
1. Burroughs JP, Campa H, Winterstein SR, Rudolph BA, Moritz WE. Cause-specific mortality and survival of white-tailed deer fawns in southwestern lower Michigan. J Wild Manag. 2006;70:743–51.
2. Hiller TL, Campa H, Winterstein SR, Rudolph BA. Age-specific survival and space use of white-tailed deer in southern Michigan. Mich Acad. 2008;38:101–19.
3. Bishop CJ, Anderson CR, Walsh DP, Bergman EJ, Kuechle P, Roth J. Effectiveness of a redesigned vaginal implant transmitter in mule deer. J Wild Manag. 2011;75:1797–806.
4. Huegel CN, Dahlgren RB, Gladfelter HL. Use of doe behavior to capture white-tailed deer fawns. Wildl Soc Bull. 1985;13:287–9.
5. Ballard WB, Whitlaw HA, Young SJ, Jenkins RA, Forbes GJ. Predation and survival of white tailed deer fawns in northcentral New Brunswick. J Wild Manag. 1999;63:574–9.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献