Maximising the value of transmitted data from PSATs tracking marine fish: a case study on Atlantic bluefin tuna

Author:

Horton Thomas W.,Birch Samantha,Block Barbara A.,Hawkes Lucy A.,van der Kooij Jeroen,Witt Matthew J.,Righton David

Abstract

Abstract Background The use of biologging tags to answer questions in animal movement ecology has increased in recent decades. Pop-up satellite archival tags (PSATs) are often used for migratory studies on large fish taxa. For PSATs, movements are normally reconstructed from variable amounts of transmitted data (unless tags are recovered, and full data archives accessed) by coupling geolocation methods with a state-space modelling (SSM) approach. Between 2018 and 2019, we deployed Wildlife Computers PSATs (MiniPATs) from which data recovery varied considerably. This led us to examine the effect of PSAT data volume on SSM performance (i.e., variation in reconstructed locations and their uncertainty). We did this by comparing movements reconstructed using partial (< 100%) and complete (100%) geolocation data sets from PSATs and investigated the variation in Global Position Estimator 3 (GPE3; Wildlife Computers’ proprietary light-based geolocation SSM) reconstructed locations and their certainty in relation to data volume and movement type (maximum dispersal distance). Results In this analysis, PSATs (n = 29) deployed on Atlantic bluefin tuna (Thunnusthynnus) transmitted data after detaching from study animals for between 0.3 and 10.8 days (mean 4.2 ± 3 days), yielding between 2 and 82% (mean 27% ± 22%) of total geolocation data. The volume of geolocation data received was positively related to the amount of time a tag transmitted for and showed a weak negative relationship to the length of the tag deployment. For 12 recovered PSATs (i.e., 100% of geolocation data; mean ± 1 S.D. = 301 ± 90 days of data per fish), (i) if ABT travelled short-distances (< 1000 km), movements reconstructed from partial data sets were more similar to their complete data set counterpart than fish that travelled over longer distances (> 1000 km); (ii) for fish that travelled long distances, mean distance of locations from corresponding complete data set locations were inversely correlated with the volume of data received; (iii) if only 5% of data was used for geolocation, reconstructed locations for long-distance fish differed by 2213 ± 647 km from the locations derived from complete data sets; and, (iv) track reconstructions omitted migrations into the Mediterranean Sea if less than 30% of data was used for geolocation. Conclusions For Wildlife Computers MiniPATs in our specific application, movements reconstructed with as little as 30% of the total geolocation data results in plausible outputs from the GPE3. Below this data volume, however, significant differences of more than 2000 km can occur. Whilst for a single species and manufacturer, this highlights the importance of careful study planning and the value of conducting study-specific sensitivity analysis prior to inclusion of modelled locations in research outputs. Based on our findings, we suggest general steps and refinements to maximise the value of light geolocation data from PSATs deployed on aquatic animals and highlight the importance of conducting data sensitivity analyses.

Funder

European Maritime and Fisheries Fund

Department for Environment, Food and Rural Affairs, UK Government

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3