Detection range of two acoustic transmitters in four reservoir habitat types using passive receivers

Author:

Fincel Mark,Goble Cameron,Gravenhof Dylan,Morey Hilary

Abstract

Abstract Background Recently, South Dakota Department of Game, Fish, and Parks (SDGFP), has undertaken a suite of rigorous acoustic telemetry studies. The goals and scope of the individual research projects vary but all use the same receiver array throughout Lake Sharpe in central South Dakota. Prior to initiating the telemetry studies, we sought to describe the detection probability of receivers from a representation of habitats within Lake Sharpe, South Dakota. We used both a V9-2H transmitter and a V13-1L transmitter in combination with VR2W 69 kHz passive receivers [all from Innovasea (Vemco)] to determine detection probability in four novel habitats of Lake Sharpe. Both transmitter and receiver were moored at fixed distances (200 m 400, and 600 m) for multiple consecutive days and detection probability compared between transmitter type, distance, site, and diel period using ANOVA following arcsine square-root transformation. Results We found significant differences in detection probability between the four habitat types for both the V9 and V13 transmitters. Sites protected from wind and wave action, and with little boat traffic, had larger detection ranges compared to areas that were wind exposed and host more boat traffic. The site immediately downstream from a hydroelectric dam that is exposed to both high wind fetch and is popular for boating, exhibited the poorest detection probability at all distances for both transmitter types. V13 transmitters consistently exhibited greater detection probability relative to V9 transmitters and this difference was greater at further distances. In general, detection probability was higher at nighttime compared to daytime and these differences were significant dependent on transmitter, site, and distance. Conclusions Using the information presented, SDGFP has modified their receiver array to maximize the ability to detect acoustic transmitters in the novel habitats of Lake Sharpe. Specifically, receiver spacing was reduced and/or expanded dependent on the distance, where 50% detection probability was attained. More work is needed to identify those factors that influence detection probability of acoustic telemetry systems.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3