Seagrass canopies and the performance of acoustic telemetry: implications for the interpretation of fish movements

Author:

Swadling Daniel S.ORCID,Knott Nathan A.ORCID,Rees Matthew J.,Pederson Hugh,Adams Kye R.,Taylor Matthew D.ORCID,Davis Andrew R.ORCID

Abstract

Abstract Background Acoustic telemetry has been used with great success to quantify the movements of marine fishes in open habitats, however research has begun to focus on patterns of movement and habitat usage within more structurally complex habitats. To date, there has been no detailed assessment of the performance of acoustic telemetry within seagrass, which forms a crucial nursery and foraging habitat for many fish species globally. Information on the detection range of acoustic receivers within seagrass is essential to guide receiver array design, particularly positioning systems. Here, we compare detection ranges for transmitters (Vemco V7) within and above the seagrass to determine impacts on the performance of a Vemco Positioning System (VPS). We also investigate the influence of environmental conditions (i.e. wind, time of day, background noise, atmospheric pressure and depth) on detection probability. Results The performance of the VPS declined dramatically when the transmitters were positioned within the seagrass (positional accuracy = 2.69 m, precision = 0.9 m, system efficiency (i.e. the proportion of successful positions) = 5.9%) compared to above the canopy (positional accuracy = 2.21 m, precision = 0.45 m, system efficiency = 30.9%). The reduction in VPS efficiency when transmitters were within seagrass was caused by a decline in the detection range of receivers (range of 50% detections) from 85 to 40 m, as this limited the ability of the three receivers to simultaneously detect transmissions. Additionally, no detections were recorded for the transmitters within seagrass at a distance greater than 150 m from the receiver. Increasing wind speed from 0 to 50 km h−1 correlated with a 15% reduction in detections while detection probability decreased from 0.8 during the day to 0.55 at night, due to higher in-band noise (69 kHz). Conclusions Our findings demonstrate that tagged fish ensconced within seagrass are unlikely to be detected by receivers or positioned by a VPS. Further, we demonstrate that wind conditions and the time of day create temporal variation in detection probability. These findings highlight the need for telemetry studies to perform in situ range testing and consider how fish use vegetated habitats such as seagrasses when positioning receivers and interpreting data.

Funder

Sea World Research and Rescue Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3