The advantages and challenges of non-invasive towed PILOT tags for free-ranging deep-diving megafauna

Author:

Fontes J.,Macena B.,Solleliet-Ferreira S.,Buyle F.,Magalhães R.,Bartolomeu T.,Liebsch N.,Meyer C.,Afonso P.

Abstract

Abstract Background Biologging technologies have yielded new insights into the ecology and behaviour of elasmobranchs, but to date, most studies involve animal capture and restraint to attach tags. Capturing animals usually results in a period of atypical behaviour after release and is undesirable or simply not possible for large and vulnerable elasmobranchs such as mobulas and whale sharks. To avoid animal capture and restraint, we developed and tested two non-invasive multisensor towed tags. The use of towed packages creates additional data analytical challenges relative to fixed packages because towed devices wobble independently of animal movements. We present five examples, two mobulas (reef manta and sicklefin devil ray) and three sharks (blue, tiger and whale shark), to illustrate the advantages and challenges of this approach. We used animal-borne video to validate behavioural data derived from accelerometers and conducted an experiment to compare accelerometer data from attached and towed tags simultaneously deployed on a shark. Results We used fluid dynamic models to calculate the added drag of towed devices on target species. We found that drag impact is acceptable for short-term tagging of large mobulas, but the drag penalty associated with the current camera tag design is greater than 5% for most mature blue sharks. Despite wobble effects, swimming behaviour (tail-beat and wing-stroke frequency) captured by towed accelerometers was consistent with those attached directly to the animal and with data from animal-borne video. Global Positioning System (GPS) sensors recorded up to 28 and 9 geolocations per hour of surface swimming by sicklefin devil ray and blue sharks, respectively. Conclusions Towed tags with non-invasive attachments provide an effective alternative for acquiring high-resolution behaviour and environmental data without capturing and handling animals. This tool yields great potential to advance current knowledge of mobula ecology and behaviour without capture or invasive tagging.

Funder

Fundação para a Ciência e a Tecnologia,Portugal

Direcção Regional da Ciência e Tecnologia dos Açores

ProWin ProNature Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3