Very small collars: an evaluation of telemetry location estimators for small mammals

Author:

Hummell Grace F.,Li Andrew Y.,Mullinax Jennifer M.

Abstract

Abstract Background Fine-scale tracking of animals such as Peromyscus spp. is still done with micro-very high frequency collars due to the animal’s small size and habitat usage. In most cases, tracking micro-very high frequency collars requires manual telemetry, yet throughout the literature, there is little reporting of individual telemetry methods or error reporting for small mammal spatial analyses. Unfortunately, there is even less documentation and consensus on the best programs used to calculate fine-scale animal locations from compass azimuths. In this study, we present a strategy for collecting fine-scale spatial data on Peromyscus spp. as a model species for micro-very high frequency collars and assess multiple programmatic options and issues when calculating telemetry locations. Results Mice were trapped from April to October 2018–2019 with Sherman traps in Howard County, Maryland, USA. Collars were placed on 61 mice, of which 31 were included in the analyses. We compared the two most cited location estimator programs in the literature, location of a signal software and Locate III, as well as the Sigloc package in program R. To assess the programmatic estimates of coordinates at a fine scale and examine programmatic impacts on different analyses, we created and compared minimum convex polygon and kernel density estimator home ranges from locations produced by each program. We found that 95% minimum convex polygon home range size significantly differed across all programs. However, we found more similarities in estimates across calculations of core home ranges. Kernel density estimator home ranges had similar patterns as the minimum convex polygon home ranges with significant differences in home range size for 95% and 50% contours. These differences likely resulted from different inclusion requirements of bearings for each program. Conclusions This study highlights how different location estimator programs could change the results of a small mammal study and emphasizes the need to calculate telemetry error and meticulously document the specific inputs and settings of the location estimator.

Funder

Agricultural Research Service

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3