Author:
Crawford Innes,McBeth Paul B,Mitchelson Mark,Ferguson James,Tiruta Corina,Kirkpatrick Andrew W
Abstract
Abstract
Background
Worldwide ultrasound equipment accessibility is at an all-time high, as technology improves and costs decrease. Ensuring that patients benefit from more accurate resuscitation and diagnoses from a user-dependent technology, such as ultrasound, requires accurate examination, typically entailing significant training. Remote tele-mentored ultrasound (RTUS) examination is, however, a technique pioneered in space medicine that has increased applicability on earth. We, thus, sought to create and demonstrate a cost-minimal approach and system with potentially global applicability.
Methods
The cost-minimal RTUS system was constructed by utilizing a standard off-the-shelf laptop computer that connected to the internet through an internal wireless receiver and/or was tethered through a smartphone. A number of portable hand-held ultrasound devices were digitally streamed into the laptop utilizing a video converter. Both the ultrasound video and the output of a head-mounted video camera were transmitted over freely available Voice Over Internet Protocol (VOIP) software to remote experts who could receive and communicate using any mobile device (computer, tablet, or smartphone) that could access secure VOIP transmissions from the internet.
Results
The RTUS system allowed real-time mentored tele-ultrasound to be conducted from a variety of settings that were inside buildings, outside on mountainsides, and even within aircraft in flight all unified by the simple capability of receiving and transmitting VOIP transmissions. . Numerous types of ultrasound examinations were conducted such as abdominal and thoracic examinations with a variety of users mentored who had previous skills ranging from none to expert. Internet connectivity was rarely a limiting factor, with competing logistical and scheduling demands of the participants predominating.
Conclusions
RTUS examinations can educate and guide point of care clinical providers to enhance their use of ultrasound. The scope of the examinations conducted is limited only by the time available and the criticality of the subject being examined. As internet connectivity will only improve worldwide, future developments need to focus on the human factors to optimize tele-sonographic interactions.
Publisher
Springer Science and Business Media LLC
Subject
Radiological and Ultrasound Technology
Reference33 articles.
1. Kirkpatrick AW, Sustic A, Blaivas M: Introduction to the use of ultrasound in critical care medicine. Crit Care Med 2007,35(5):S290-S304.
2. Neri L, Storti E, Lichtenstein D: Toward an ultrasound curriculum for critical care medicine. Crit Care Med 2007,35(5):S290-S304.
3. Moore CL, Copel JA: Point-of-care ultrasonography. N Engl J Med 2011,364(8):749–757. 10.1056/NEJMra0909487
4. O'Connell K, Bouffard AJ, Vollman A, Mercado-Young R, Sargsyan AE, Rubinfeld I, Dulchavsky SA: Extreme musculo-skeletal ultrasound: training of non-physicians in the Arctic Circle. Crit Ultrasound J 2011, 3: 19–24. 10.1007/s13089-011-0062-7
5. World Health Organization: TELEMEDICINE: opportunities and developments in member states report. In Second Global Survey on eHealth Global Observatory for eHealth Series, vol 2. WHO Press, Switzerland; 2011.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献